Свойства вычитания натуральных чисел

5.

7.

8.

9.

10 . Наименьший нечётный делитель натурального числа n, отличный от 1, равен d, а наибольший нечётный делитель n равен числу D >

11 . Найдите все пары простых чисел p и q (p >

12*

1

2

3

Обозначим через k произведение нескольких (больше одного) первых простых чисел. Докажите, что число

а) k – 1; б) k + 1 не является точным квадратом.

5. Пусть a и n – натуральные числа, большие 1. Докажите, что если число a n – 1 простое, то a = 2 и n – простое.

(Числа вида q = 2 n – 1 называются числами Мерсенна.)

Сумма двух натуральных чисел равна 201. Докажите, что произведение этих чисел не может делиться на 201

7. Целые числа x, y и z таковы, что (x – y)(y – z)(z – x) = x + y + z. Докажите, что число x + y + z делится на 27.

8. Докажите, что среди любых десяти последовательных натуральных чисел найдётся число, взаимно простое с остальными.

9. Натуральное число n назовём суперсоставным, если каждый его простой делитель меньше . Докажите, что существует бесконечно много троек последовательных суперсоставных чисел.

10 . Наименьший нечётный делитель натурального числа n, отличный от 1, равен d, а наибольший нечётный делитель n равен числу D > d. Оказалось, что n = 3D+5d. Найдите все такие n.

11 . Найдите все пары простых чисел p и q (p > q) такие, что (p+q) 3 не делится на 3, но делится на (p–q) 2 .

12* . У натурального числа n выписали четыре различных делителя, меньших n, оканчивающихся на одну и ту же ненулевую цифру. Докажите, что их сумма меньше, чем 6n/7.

1 . а) p, p + 10, p + 14 – простые числа. Найдите p. б) p, 2p + 1, 4p + 1 – простые числа. Найдите p

2 .p и p 2 + 2 – простые числа. Докажите, что p 3 + 2 – также простое число.

3 .Решить в целых числах уравнение xy + 3x - 5y = 32

Похожая информация:

  1. A. Психический процесс запечатления, сохранения и воспроизведение прошлого опыта
  2. B. воспроизведение определённой совокупности условий, которые приводят к определённым результатам.
  3. FREE. Вы можете зарегистрироваться на БЕСПЛАТНУЮ ПАРТНЕРСКУЮ ПРОГРАММУ и со временем выйти на заработок~ $85 в день.

Итак, в общем случае вычитание натуральных чисел НЕ обладает переместительным свойством . Запишем это утверждение с помощью букв. Если a и b неравные натуральные числа, то a−b≠b−a . Например, 45−21≠21−45 .

Свойство вычитания суммы двух чисел из натурального числа.

Следующее свойство связано с вычитанием из натурального числа суммы двух чисел. Давайте рассмотрим пример, который даст нам понимание этого свойства.

Представим, что у нас в руках находится 7 монет. Мы сначала решаем сохранить 2 монеты, но, подумав, что этого будет мало, решаем сохранить еще одну монету. На основании смысла сложения натуральных чисел можно утверждать, что в этом случае мы приняли решение сохранить количество монет, которое определяется суммой 2+1 . Итак, берем две монеты, добавляем к ним еще одну монету и помещаем их в копилку. При этом количество монет, оставшихся у нас в руках, определяется разностью 7−(2+1) .

А теперь представим, что у нас есть 7 монет, и мы помещаем в копилку 2 монеты, а после этого - еще одну монету. Математически этот процесс описывается следующим числовым выражением: (7−2)−1 .

Если пересчитать монеты, которые остаются в руках, то и в первом и во втором случаях мы имеем 4 монеты. То есть, 7−(2+1)=4 и (7−2)−1=4 , следовательно, 7−(2+1)=(7−2)−1 .

Рассмотренный пример позволяет нам сформулировать свойство вычитания суммы двух чисел из данного натурального числа. Вычесть из данного натурального числа данную сумму двух натуральных чисел - это все равно, что из данного натурального числа вычесть первое слагаемое данной суммы, после чего из полученной разности вычесть второе слагаемое .

Напомним, что мы придали смысл вычитанию натуральных чисел лишь для случая, когда уменьшаемое больше, чем вычитаемое, или равно ему. Поэтому мы можем вычесть из данного натурального числа данную сумму лишь тогда, когда эта сумма не больше, чем уменьшаемое натуральное число. Заметим, что при выполнении этого условия, каждое из слагаемых не превосходит натурального числа, из которого вычитается сумма.

С помощью букв свойство вычитания суммы двух чисел из данного натурального числа записывается в виде равенства a−(b+c)=(a−b)−c , где a , b и c – некоторые натуральные числа, причем выполняются условия a>b+c или a=b+c .

Рассмотренное свойство, а также сочетательное свойство сложения натуральных чисел , позволяют выполнять вычитание суммы трех и большего количества чисел из данного натурального числа .

Свойство вычитания натурального числа из суммы двух чисел.

Переходим к следующему свойству, которое связано с вычитанием данного натурального числа из данной суммы двух натуральных чисел. Рассмотрим примеры, которые помогут нам «увидеть» это свойство вычитания натурального числа из суммы двух чисел.

Пусть у нас в первом кармане находятся 3 конфеты, а во втором – 5 конфет, и пусть нам нужно отдать 2 конфеты. Мы это можем сделать разными способами. Разберем их по очереди.

Во-первых, мы можем сложить все конфеты в один карман, после чего оттуда достать 2 конфеты и отдать их. Опишем эти действия математически. После того, как мы сложим конфеты в один карман, их количество будет определяться суммой 3+5 . Теперь из общего количества конфет мы отдадим 2 конфеты, при этом оставшееся у нас количество конфет будет определяться следующей разностью (3+5)−2 .

Во-вторых, мы можем отдать 2 конфеты, достав их из первого кармана. В этом случае разность 3−2 определяет оставшееся количество конфет в первом кармане, а общее количество оставшихся у нас конфет будет определяться суммой (3−2)+5 .

В-третьих, мы можем отдать 2 конфеты из второго кармана. Тогда разность 5−2 будет соответствовать количеству оставшихся конфет во втором кармане, а общее оставшееся количество конфет определит сумма 3+(5−2) .

Ясно, что во всех случаях у нас останется одинаковое количество конфет. Следовательно, справедливы равенства (3+5)−2=(3−2)+5=3+(5−2) .

Если бы нам пришлось отдать не 2 , а 4 конфеты, то мы могли бы это сделать двумя способами. Во-первых, отдать 4 конфеты, предварительно сложив их все в один карман. В этом случае оставшееся количество конфет определяется выражением вида (3+5)−4 . Во-вторых, мы могли отдать 4 конфеты из второго кармана. В этом случае общее количество конфет дает следующая сумма 3+(5−4) . Понятно, что и в первом и во втором случае у нас останется одинаковое количество конфет, следовательно, справедливо равенство (3+5)−4=3+(5−4) .

Проанализировав результаты, полученные при решении предыдущих примеров, мы можем сформулировать свойство вычитания данного натурального числа из данной суммы двух чисел. Вычесть из данной суммы двух чисел данное натуральное число – это все равно, что вычесть данное число из одного из слагаемых, после чего сложить полученную разность и другое слагаемое . Следует оговориться, что вычитаемое число НЕ должно быть больше, чем слагаемое, из которого это число вычитается.

Запишем свойство вычитания натурального числа из суммы с помощью букв. Пусть a , b и c – некоторые натуральные числа. Тогда при условии, что a больше или равно c , справедливо равенство (a+b)−c=(a−c)+b , а при выполнении условия, что b больше или равно c , справедливо равенство (a+b)−c=a+(b−c) . Если и a и b больше или равно c , то справедливы оба последних равенства, и их можно записать следующим образом: (a+b)−c=(a−c)+b= a+(b−c) .

По аналогии можно сформулировать свойство вычитания натурального числа из суммы трех и большего количества чисел. В этом случае данное натуральное число можно вычесть из любого слагаемого (конечно, если оно больше или равно вычитаемому числу), и к полученной разности прибавить оставшиеся слагаемые.

Чтобы наглядно представить озвученное свойство, можно представить, что у нас много карманов, и в них находятся конфеты. Пусть нам нужно отдать 1 конфету. Понятно, что мы можем отдать 1 конфету из любого кармана. При этом не важно, из какого именно кармана мы ее отдадим, так как это не влияет на то количество конфет, которое у нас останется.

Приведем пример. Пусть a , b , c и d – некоторые натуральные числа. Если a>d или a=d , то разность (a+b+c)−d равна сумме (a−d)+b+c . Если b>d или b=d , то (a+b+c)−d=a+(b−d)+c . Если же c>d или c=d , то справедливо равенство (a+b+c)−d=a+b+(c−d) .

Следует отметить, что свойство вычитания натурального числа из суммы трех и большего количества чисел не является новым свойством, так как оно следует из свойств сложения натуральных чисел и свойства вычитания числа из суммы двух чисел.

Список литературы.

  • Математика. Любые учебники для 1, 2, 3, 4 классов общеобразовательных учреждений.
  • Математика. Любые учебники для 5 классов общеобразовательных учреждений.

ДЕЛИМОСТЬ НАТУРАЛЬНЫХ ЧИСЕЛ

Отношение делимости. Если при делении с остатком натурального числа а на натуральное число b остаток равен 0, то говорят что а делится на b. В этом случае а называют кратным числа b, b называют делителем числа а.

Обозначение а:b

Запись символами (а,bN) (а:b)(сN) (а=вс).

Простое число. Натуральное число называют простым, если оно делится только на себя и на единицу, т.е если у него только два делителя.

Составное число. Натуральное число называют составным, если у него более двух делителей.

1 не является ни простым, ни составным числом, т.к имеет только один делитель - себя.

2 - единственное четное простое число.

Свойства отношения делимости:

1. если а делится на b, то а?b.

2. рефлексивность, т.е. каждое натуральное число делится само на себя.

3. антисимметричность, т.е. если два числа не равны, и первое из них делится на второе, то второе не делится на первое.

4. транзитивность, т.е. если первое число делится на второе число, второе число делится на третье число, то первое число делится на третье число.

Отношение делимости на N - это отношение частичного нестрогого порядка. Порядок частичный, т.к. есть такие пары разных натуральных чисел, ни одно из которых не делится на другое.

Признак делимости суммы на число. Если каждое слагаемое суммы делится на число, то вся сумма делится на это число (для того чтобы сумма делилась на число, достаточно, чтобы каждое слагаемое делилось на это число). Этот признак не является необходимым, т.е. если каждое слагаемое не делится на число, то вся сумма может делиться на это число.

Признак делимости разности на число. Если уменьшаемое и вычитаемое делятся на число и уменьшаемое больше вычитаемого, то разность делится на это число (для того чтобы разность делилась на число, достаточно, чтобы уменьшаемое и вычитаемое делились на это число, при условии, что эта разность положительна). Этот признак не является необходимым, т.е. уменьшаемое и вычитаемое могут не делиться на число, а их разность может делиться на это число.

Признак неделимости суммы на число. Если все слагаемые суммы, кроме одного, делятся на число, то сумма не делится на это число.

Признак делимости произведения на число. Если хотя бы один множитель в произведении делится на число, то произведение делится на это число (для того чтобы произведение делилось на число, достаточно, чтобы один множитель в произведении делился на это число). Этот признак не является необходимым, т.е. если ни один множитель в произведении не делится на число, то произведение может делиться на это число.

Признак делимости произведения на произведение. Если число а делится на число b, число с делится на число d, то произведение чисел а и с делится на произведение чисел b и d. Этот признак не является необходимым.

Признак делимости натуральных чисел на 2. Чтобы натуральное число делилось на 2, необходимо и достаточно, чтобы десятичная запись этого числа оканчивалась на одну из цифр 0, 2, 4, 6 или 8.

Признак делимости натуральных чисел на 5. Чтобы натуральное число делилось на 5, необходимо и достаточно, чтобы десятичная запись этого числа оканчивалась на 0 или на 5.

Признак делимости натуральных чисел на 4. Чтобы натуральное число делилось на 4, необходимо и достаточно, чтобы десятичная запись этого числа оканчивалась на 00 или две последние цифры в десятичной записи этого числа образовывали двузначное число, кратное 4.

Признак делимости натуральных чисел на 3. Чтобы натуральное число делилось на 3, необходимо и достаточно, чтобы сумма всех цифр десятичной записи этого числа делилась на 3.

Признак делимости натуральных чисел на 9. Чтобы натуральное число делилось на 9, необходимо и достаточно, чтобы сумма всех цифр десятичной записи этого числа делилась на 9.

Общий делитель натуральных чисел а и в - это натуральное число, которое является делителем каждого из этих чисел.

Наибольший общий делитель натуральных чисел а и в- это наибольшее натуральное число из всех общих делителей этих чисел.

Обозначение НОД (а, в)

Свойства НОД (а, в):

1. всегда существует и только один.

2. не превосходит меньшего из а и в.

3. делится на любой общий делитель а и в.

Общее кратное натуральных чисел а и в - это натуральное число, кратное каждому из этих чисел.

Наименьшее общее кратное натуральных чисел а и в - это наименьшее натуральное число из всех общих кратных этих чисел.

Обозначение НОК (а, в)

Свойства НОК (а, в):

1. всегда существует и только одно.

2. не меньше большего из а и в.

3. любое общее кратное а и в делится на него.

Взаимно простые числа. Натуральные числа а и в называют взаимно простыми, если у них нет общих делителей, кроме 1, т.е. НОД (а, в)=1.

Признак делимости на составное число. Чтобы натуральное число а делилось на произведение взаимно простых чисел m и n, необходимо и достаточно, чтобы число а делилось на каждое из них.

1. Чтобы число делилось на 12, необходимо и достаточно, чтобы оно делилось на 3 и на 4.

2. Чтобы число делилось на 18, необходимо и достаточно, чтобы оно делилось на 2 и на 9.

Разложение числа на простые множители- это представление этого числа в виде произведения простых множителей.

Основная теорема арифметики. Любое составное число можно единственным образом представить в виде произведения простых множителей.

Алгоритм нахождения НОД:

Записать произведение общих для данных чисел простых множителей, причем каждый множитель записать с наименьшим показателем, с каким он входит во все разложения.

Найти значение полученного произведения. Это и будет НОД данных чисел.

Алгоритм нахождения НОК:

Разложить каждое число на простые множители.

Записать произведение всех простых множителей из разложений, причем каждый из них записать с наибольшим показателем, с каким он входит во все разложения.

Найти значение полученного произведения. Это и будет НОК данных чисел.

Множество положительных рациональных чисел

Дробь. Пусть даны отрезок а и единичный отрезок е , который состоит из n отрезков, равных e .

Если отрезок а состоит из m отрезков, равных e . то его длина может быть представлена в виде

Символ называют дробью ; m, n - натуральные числа; m - числитель дроби, n - знаменатель дроби. n показывает, на сколько равных частей разделена единица измерения; m показывает, сколько таких частей содержится в отрезке a.

Равные дроби. Дроби, выражающие длину одного и того же отрезка в одной единице измерения, называют равными.

Признак равенства дробей.

Основное свойство дроби. Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится дробь, равная данной.

Сокращение дроби - это замена данной дроби другой, равной ей, но с меньшим числителем и знаменателем.

Несократимая дробь - это дробь, числитель и знаменатель которой взаимно простые числа, т.е. их НОД равен единице.

Приведение дробей к общему знаменателю - это замена данных дробей другими, равными им с равными знаменателями.

Положительное рациональное число - это бесконечное множество разных по написанию, но равных между собой дробей; каждая дробь этого множества есть форма записи этого положительного рационального числа.

Равные положительные рациональные числа - это числа, которые могут быть записаны равными дробями.

Сумма положительных рациональных чисел. Если положительное рациональное число a b представлено дробью, то их суммой с , представленное дробью.

Переместительное свойство сложения. От перемены мест слагаемых, значение суммы не меняется.

Сочетательное свойство сложения. Чтобы к сумме двух чисел прибавить третье, можно к первому числу прибавить сумму второго и третьего.

Существование суммы и её единственность. Каковы бы не были положительные рациональные числа a и b их сумма всегда существует и причем единственна.

Правильная дробь - дробь. числитель которой меньше знаменателя.

Неправильная дробь - дробь, числитель которой больше знаменателя или равен ему.

Неправильную дробь можно записать в виде натурального числа или в виде смешанной дроби.

Смешанная дробь - это сумма натурального числа и правильной дроби (принято записывать без знака сложения).

Отношение «меньше» на Q . Положительное рациональное число b меньше положительного рационального числа a, если существует положительное рациональное число c , которое в сумме с b дает a .

Свойства отношения «меньше».

1. Антирефлексивность. Ни одно число не может быть меньше самого себя.

2. Антисимметричность. Если первое число меньше второго, то второе не может быть меньше первого.

3. Транзитивность. Если первое число меньше второго, а второе меньше третьего, то первое число меньше третьего.

4. Связанность. Если два числа не равны, то либо первое меньше второго, либо второе меньше первого.

Отношение «меньше» на Q - это отношение строгого линейного порядка.

Разность положительных рациональных чисел. Разностью положительных рациональных чисел a и b называется положительное рациональное число c , которое в сумме с b дает a .

Существование разности. Разность чисел a и b существует тогда и только тогда, когда b меньше a .

Если разность существует, то она единственная.

Произведение положительных рациональных чисел. Если положительное рациональное число a представлено дробью, положительное рациональное число b представлено дробью, то их произведением называется положительное рациональное число с , представленное дробью.

Существование произведения и его единственность. Каковы бы не были положительные рациональные числа a и b их произведение всегда существует и причем единственно.

Переместительное свойство умножения. От перемены мест сомножителей значение произведения не меняется.

Сочетательное свойство умножения. Чтобы произведение двух чисел умножить на третье, можно первое число умножить на произведение второго и третьего.

Распределительное свойство умножения относительно сложения. Чтобы сумму чисел умножить на число, можно каждое слагаемое умножить на это число и полученные произведения сложить.

Частное положительных рациональных чисел. Частным положительных рациональных чисел a и b называется положительное рациональное число c, которое при умножении на b дает a .

Существование частного. Каковы бы не были положительные рациональные числа a и b , их частное всегда существует и причем единственное.

Множество Q и его свойства.

1. Q линейно упорядоченно с помощью отношения «меньше».

2. В Q нет наименьшего числа.

3. В Q нет наибольшего числа.

4. Q бесконечное множество.

5. Q плотно в себе, т.е. меду любыми двумя разными положительными рациональными числами заключено бесконечное множество положительных рациональных чисел.

Запись положительных рациональных чисел в виде десятичных дробей.

Десятичная дробь - это дробь вида m/n , где m и n - натуральные числа.

Виды десятичных дробей. Конечные, бесконечные, периодические (чисто периодические и смешанно периодические), непериодические.

Конечная десятичная дробь - это дробь. в которой после запятой стоит конечное число цифр.

Бесконечная периодическая десятичная дробь - это дробь, которая получается бесконечным повторением одной и той же группой цифр, начиная с некоторого номера, а повторяющаяся группа цифр называется её периодом.

Чисто периодические и смешанно периодические дроби. Если период дроби начинается сразу после запятой, то эта дробь называется чисто периодической. Если между запятой и началом периода есть несколько цифр, то дробь называется смешано периодической.

Теорема. Любое положительное рациональное число может быть представлено либо в виде конечной десятичной дроби, либо бесконечной периодической десятичной дроби.

Перевод обыкновенной дроби в десятичную. Для перевода надо числитель делить на знаменатель в столбик. При делении получится либо конечная десятичная дробь, либо бесконечная периодическая.

Перевод конечной десятичной дроби в обыкновенную. Отбросить запятую, полученное число записать в числитель, а в знаменатель записать столько нулей после единицы, сколько цифр было после запятой.

Перевод чисто периодической дроби в обыкновенную. Период дроби записать в числитель, а в знаменатель записать столько девяток, сколько цифр в периоде.

Перевод смешанно периодической дроби в обыкновенную. В числитель записать разность между числом, стоящим между запятой и второй скобкой, и числом, стоящим между запятой и первой скобкой; в знаменатель записать столько девяток, сколько цифр в периоде, и столько нулей после них, сколько цифр между запятой и первой скобкой.

Теорема. Чтобы несократимую дробь можно было записать в виде конечной десятичной дроби, необходимо и достаточно, чтобы в разложение ее знаменателя на простые множители входили лишь числа 2 и 5.

Натуральными называют числа, используемые при счете (нумерации, перечислении) предметов. То есть, это целые положительные числа. Отрицательные и нецелые числа — к натуральным не относятся.

Натуральный ряд чисел конструируется на основе начального натурального числа, называемого единицей (обозначение 1) и операции перехода к следующему. Эта операция применима к любому натуральному числу, а ее результат считается натуральным числом, следующим за исходным.

Для любого натурального числа существует только одно следующее. Единица является наименьшим натуральным числом, поскольку нет такого натурального числа, для которого она была бы следующим. Наибольшего натурального числа не существует, поскольку для любого натурального числа можно построить следующее. Формально структура множества натуральных чисел задается пятью аксиомами Пеано.

Между математиками есть расхождение по вопросу о том, какое число считать наименьшим в натуральном ряду. Во французской традиции, восходящей к работам Н.Бурбаки, в отличие от других математических школ натуральными принято считать числа, выражающие количество предметов в группе. Поэтому в этой традиции наименьшим натуральным числом считается ноль (0), а не единица, и, соотвественно, французские математики, в отличие от других, признают ноль натуральным числом. Такой подход мотивирован также теоретико-множественной моделью натурального ряда, в которой ноль отождествляется с пустым множеством (Ø), а операция перехода к следующему — с образованием множества, состоящего из всех предшествующих натуральных чисел (представленных множествами):

2 ≡ {Ø, {Ø}}

3 ≡ {Ø, {Ø}, {Ø, {Ø}}}

4 ≡ {Ø, {Ø}, {Ø, {Ø}}, {Ø, {Ø}, {Ø, {Ø}}}}

Следует отметить, что при таком построении каждое натуральное число совпадает с мощностью соответствующего ему множества.

Порядок. На множестве натуральных чисел определено отношение порядка «меньше», обозначаемое символом «<». Натуральные числа M и N связаны отношением «меньше» (M

Сложение. На основе операции перехода к следующему определяется операция сложения, обозначаемая символом «+». Суммой M+N двух натуральных чисел M и N называется число K, получаемое из числа M в результате N-кратного применения операции перехода к следующему. Сумма двух натуральных чисел всегда является натуральным числом.

Вычитание. На основе операции сложения определяется операция вычитания, обозначаемая символом «-». Разностью M-N называется такое число K, которое при прибавлении к N дает M. Разность существует не для любых натуральных чисел M и N, а только для таких, которые связаны отношением «меньше»: N

Умножение. На основе операции сложения на множестве натуральных чисел вводится операция умножения, обозначаемая символом «·». Произведением M·N двух натуральных чисел M и N называется число K, получаемое из числа M в результате (N-1)-кратного прибавления к нему числа M. Произведение любых двух натуральных чисел является натуральным числом.

Деление. На основе операции умножения определяется операция деления, обозначаемая символом «/». Частным M/N двух натуральных чисел M и N называется такое число K, которое при умножении на N дает M. Далеко не для любой пары натуральных чисел существует натуральное частное. В тех случаях, когда оно существует, говорят, что два натуральных числа делятся друг на друга.



Какой официальный сайт ОАО "Мосэнерго"
Горячие линии департаментов, комитетов, управлений города Москвы Горячие линии управлений социальной защиты На сайтах департаментов, комитетов, главных управлений, инспекций города Москвы и городских организаций, есть адреса, телефоны, часы работы и другая необходимая информация: 1) Департаменты Департамент поддержки и развития малого предпринимательства &

Чем процентный пункт отличается от процента
Процентный пункт (percentage point) — единица, применяемая для сравнения величин, выраженных в процентах. Процентные пункты относят различия не к значениям обсуждаемых величин, а к 100-процентной шкале, относительно которой они выражены. Например, если инфляция в одном году составила 8%, а в следующем &mdas

Какой официальный сайт WWE
World Wrestling Entertainment, Inc. (также известна как WWE) — американская компания, занимающаяся проведением мероприятий в области профессионального рестлинга, а также выпускающая тематическую кинопродукцию, музыкальные диски, одежду и компьютерные игры. Основана Родериком Джеймсом МакМэном и Т

Что такое нутрициология
Нутрициология — это одно из направлений науки о питании человека и животных (от позднелат. nutrio — питание, пища и logos — слово). Нутрициология является интегративной наукой изучающей питательные вещества и другие компоненты, содержащиеся в продовольственном сырье и продуктах питания, их действи


Публикации решений арбитражных судов можно посмотреть по следующему адресу: http://212.33.5.41/court/court.cs_intr_fnd.qr_doc Цель портала - предоставление различным слоям общественности информации о судебном делопроизводстве в арбитражных судах, посредством публикации электронных образов судебных решений в сети

Какие комнатные растения можно выращивать в комнатах южной ориентации
Одно из основных условий существования всех комнатных растений — свет, ведь только на свету в листьях в результате фотосинтеза образуются сложные органические вещества, необходимые для роста и развития. Требования к свету у растений неодинаковы и зависят от происхождения того или иного вида. Африканские алоэ и молочаи, например, привыкшие в пустыне к палящим лучам солнца,

Как называются деньги Израиля
Название страны Название - денег/разменной монеты Австралия Австралийский доллар/цент Австрия Австрийский шиллинг/грош — евро Азербайджан Манат Албания Лек/киндарка Алжир Алжирский динар/сантимо Аргентина Аргентинский аустраль/сентаво Афганистан Афгани/пул Бангладеш Така/пайс Бельгия Бельгийский франк/сантимо — евро Болгария Лев/стотинка

Что такое граната
Граната (исп. Granada — гранат) — взрывчатый боеприпас, предназначенный для поражения живой силы и техники противника с помощью ручного метания. Современная ручная граната состоит из корпуса, заряда взрывчатых веществ и взрывателя (запала). Поражение наносится осколками корпуса, ударной волной или кумулятивной струё

Где в интернете скачать обои с изображением Pussicat Dolls
The Pussycat Dolls — американский женский поп/R&B-квинтет. Был сформирован в 1995 году хореографом Робин Антин. Группа начала работу в Лос—Анджелесе как танцевальная труппа, после чего в 2003 переформировалась в музыкальную. Первый сингл был выпущен в 2004, и группа получила коммерческий успех во всё

Какого размера планета Венера
Физические характеристики планеты Венера Параметр Значение В сравнении с Землей Средний радиус 6051,8 ± 1,0 км 0,9499 Сплюснутость 0,0 Площадь поверхности 4,60×108 км2 0,902 Объем 9,28×1011 км2 0,866 Масса 4,8685×1024

Где обитают раки
Широкопалый речной рак (лат. Astacus astacus) — вид десятиногих ракообразных из инфраотряда Astacidea. Распространён в пресных водоёмах на всей территории Европы. Начиная со второй половины XX века широкопалых раков вытесняет из естественных местообитаний другой вид пресноводных раков — Pa