Почему нельзя клонировать динозавра? Клонирование динозавров, почему нельзя клонировать динозавра Возможно ли клонировать динозавра.

09.03.2016 в 01:28

Идея клонирования динозавров из ископаемых останков была особенно актуальна после выхода на экраны фильма "Парк Юрского Периода", в котором рассказывается, как учёный научился клонировать динозавров и на необитаемом острове создал целый парк развлечений, в котором воочию можно было увидеть живое древнее животное.

Но ещё несколько лет назад австралийские учёные под руководством Мортена аллентофта и Майкла банса из университета мердока (штат западная Австралия) доказали, что "Воссоздать" живого динозавра невозможно.

Исследователи провели радиоуглеродное исследование костной ткани, взятой из окаменелых костей 158 вымерших птиц моа. Эти уникальные и огромные птицы обитали в новой Зеландии, но ещё 600 лет назад они были полностью уничтожены аборигенами маори. В результате учёные выяснили, что количество днк в костной ткани уменьшается с течением времени - каждый 521 год число молекул сокращается наполовину.

Последние молекулы днк исчезают из костной ткани примерно через 6, 8 миллиона лет. При этом последние динозавры исчезли с лица земли в конце мелового периода, то есть около 65 миллионов лет назад - задолго до критического для днк порога в 6, 8 миллиона лет, и в костной ткани останков, которые удаётся найти палеонтологам, молекул днк не осталось.

"В Результате мы Выяснили, что Количество ДНК в Костной Ткани, Если её Содержать при Температуре 13, 1 Градуса Цельсия, Каждые 521 год Уменьшается Наполовину", - рассказал руководитель группы исследователей Майк банс.

"Мы Экстраполировали эти Данные Применительно к Другим, Более Высоким и Низким Температурам и Установили, что Если Содержать Костную Ткань при Температуре Минус 5 Градусов, то Последние Молекулы ДНК Исчезнут Примерно Через 6, 8 млн лет", - добавил он.

Достаточно длинные фрагменты генома можно найти лишь в замороженных костях возрастом не более миллиона лет.

Кстати, на сегодняшний день самые древние образцы днк были выделены из останков животных и растений, найденных в вечной мерзлоте. Возраст найденных останков составляет около 500 тысяч лет.

Стоит отметить, что учёные будут проводить дальнейшие исследования в этой области, так как различия в возрасте останков отвечают лишь за 38, 6% расхождений в степени разрушения днк. На скорость распада днк влияет множество факторов, среди которых условия хранения останков после раскопок, химический состав почвы и даже время года, в которое погибло животное.

То есть есть шанс, что в условиях вечных льдов или подземных пещер период полураспада генетического материала окажется дольше, чем предполагают генетики.

А мамонта - можно?

Сообщения в том, что учёные нашли подходящие для клонирования останки появляются регулярно. Несколько лет назад учёные якутского северо-восточного федерального университета и сеульского центра исследований стволовых клеток подписали соглашение о совместной работе над клонированием мамонта. Возродить древнее животное учёные планировали с помощью биологического материала, найденного в вечной мерзлоте.

Для эксперимента был выбран современный индийский слон, так как его генетический код максимально схож с днк мамонтов. Учёные прогнозировали, что результаты эксперимента будут известны не ранее чем через 10-20 лет.

В этом году снова появились сообщения от учёных из северо-восточного федерального университета, они сообщили об обнаружении мамонта, жившего в Якутии 43 тысячи лет назад. Собранный генетический материал позволяет рассчитывать, что сохранились неповреждённые днк, но эксперты настроены скептически - ведь для клонирования требуются очень длинные цепочки днк.

Живые клоны.

Тема клонирования человека развивается не столько в научном ключе, сколько в социальном и этическом, вызывая споры на тему биологической безопасности, самоидентификации "Нового Человека", возможности появления неполноценных людей, порождая также религиозные споры. При этом эксперименты по клонированию животных проводятся и имеют примеры успешного завершения.

Первый в мире клон - головастик - был создан ещё в 1952 году. Одними из первых успешное клонирование млекопитающего (домовой мыши) осуществили советские исследователи ещё в 1987 году.

Самой яркой вехой в истории клонирования живых существ стало появление на свет овечки Долли - это первое клонированное млекопитающее животное, полученное путём пересадки ядра соматической клетки в цитоплазму яйцеклетки, лишённой собственного ядра. Овца Долли являлась генетической копией овцы - донора клетки (то есть генетическим клоном.

Лишь в том случае, если в естественных условиях каждый организм сочетает в себе генетические признаки отца и матери, то у Долли был только один генетический "Родитель" - овца - прототип. Эксперимент был поставлен Яном вилмутом и Кейтом Кэмпбеллом в рослинском институте в Шотландии в 1996 году и стал прорывом в технологиях.

Уже позже британскими и другими учёными были проведены эксперименты по клонированию различных млекопитающих, среди которых были лошади, быки, кошки и собаки.

Джулия Фейнштейн (Julie Feinstein) из Американского музея естественной истории достает замороженный образец ткани вымирающего животного


Действительно ли так нужно воскрешать динозавров из плоти и крови, если компьютерные технологии и так скоро сделают их совершенно «живыми»?


Чучело овцы Долли сегодня сохраняется в музее


«Решите все свои проблемы простой заморозкой» — слоган компании Applied Cryogenics из мультсериала «Футурама»

Фантасты и футурологи уже не раз предрекали, что в будущем вымершие существа будут снова «восстановлены» через клонирование с использованием сохранившихся — скажем, в замороженном состоянии — фрагментов ДНК. Насколько такое вообще возможно, пока понятно не до конца. Однако в США уже запущен масштабный проект по сохранению замороженных образцов тканей редких и исчезающих животных.

В принципе, подобное клонирование уже состоялось — испанские ученые «оживили» пиренейского козла , последний представитель которых умер в 2000 г. Однако клонированное животное не протянуло и 7 минут, скончавшись от легочной инфекции. Впрочем, многие специалисты сочли это крупным успехом, который вдохновил появление новых коллекций замороженных образцов, среди которых и проект Американского музея естественной истории (AMNH). И как знать, не послужат ли такие хранилища действительно бесценным «ноевым ковчегом», способным спасти от полного исчезновения множество видов.

В хранилище AMNH предусмотрено место для примерно 1 млн образцов, хотя пока что до этого числа ему далеко. Бабочки, лягушачьи лапки, фрагмент кожи кита и шкуры крокодила — такие образцы сохраняются в емкостях, охлаждаемых жидким азотом. А по недавно заключенному с американской Службой национальных парков , коллекция будет пополняться новыми экспонатами. К примеру, уже в августе ученые готовятся принять образцы крови островной лисицы , находящейся на грани вымирания. В теории, такие замороженные клетки когда-нибудь можно будет использовать для клонирования и полного «воскресения» вымершего вида. Но пока что ни одной ученой группе совершить подобное не под силу.

К примеру, испанцы, клонировавшие пиренейского козла, почти буквально следовали методу британца Яна Вилмута (Ian Wilmut) — того самого, который в 1997 г. буквально потряс весь мир, представив клонированную овцу Долли . Это показало принципиальную возможность клонировать млекопитающих — более того, овца прожила больше 6 лет и умерла в 2003 г. Однако и Долли, и испанский козел клонировались с переносом ядра: ученые брали яйцеклетку одного животного и удаляли из нее ядро, а вместо него внедряли ядро из клетки того животного, которое хотели клонировать. Затем такая «гибридная» клетка помещалась в организм суррогатной матери.

Такой метод требует идеального состояния клетки животного, которое ученые намерены клонировать. Для овцы и козла это еще может сработать, но как быть со многими исчезнувшими или исчезающими видами, от которых не сохранились ни рожки, ни ножки? Даже в криогенном хранилище с годами ДНК медленно деградирует, а уж образцы, сохранявшиеся в «естественных» условиях, и вовсе содержат лишь незначительную часть своего генома.

Впрочем, современные компьютерные технологии позволяют скрупулезно восстановить полный геном вымершего вида, комбинируя данные из нескольких образцов. Таким путем ведутся работы по генетическому картографированию древних мамонтов и даже неандертальцев. Уже получены довольно значительные фрагменты генома других вымерших видов — к примеру, пещерного медведя или моа , гигантской птицы, которая царила в Новой Зеландии до появления здесь аборигенов-маори.

А немецким исследователям удалось неплохо поработать с геномом неандертальца — правда, лишь его митохондрий (особых органелл, «энергетических станций» наших клеток, которые обладают собственным генетическим материалом). И если птицы моа вымерли примерно тысячу лет назад, то неандертальцев не существует уже около 40 тыс. лет — и тем ценнее работа ученых из Германии. Впрочем, все эти подходы никогда не сработают с образцами старше 100 тыс. лет: за этот срок ДНК деградирует полностью.

Что же — мы никогда не увидим «динозавропарк», в вольерах которого живут настоящие клонированные тираннозавры или гиганты диплодоки? Как знать. К примеру, не так давно для восстановления генома предложен метод «обратной эволюции», состоящий в работе с генотипом «живых родственников» вымершего вида.

Над таким подходом работает калифорнийский ученый Бенедикт Патен (Benedict Paten) с коллегами. Их решение состоит в секвенировании генома множества отдельных представителей родственных видов, а затем их сравнении — с тем, чтобы с помощью специальных алгоритмов определить «исходный код». К примеру, «обсчитывая» геномы человека и шимпанзе, авторы сумели «прийти» к четырем нашим общим предкам, о чем и отчитались в публикации прошлой осенью.

Впрочем, и этот метод, конечно, не идеален и имеет свои ограничения. Оживление динозавров снова откладывается. И даже если мы сумеем получить данные о геномах всех живых организмов планеты, некоторые из вымерших видов попросту не оставили никаких потомков. Они исчезли, и вряд ли информация об их ДНК каким-то образом может быть получена.

Но допустим, нам удалось получить полную расшифровку генома какого-нибудь вымершего вида. Это — только часть задачи, ведь нам нужно еще получить живой организм. А это — дело почти божественное: перейти от информации, закодированной в ДНК, к реальному существу.

Для начала понадобится синтезировать саму ДНК и каким-то образом правильно разделить ее нити на нужные хромосомы и свернуть их — тоже именно тем уникальным образом, каким они были свернуты и упорядочены у некогда живого существа. Уже на этом этапе сегодня задача неразрешима. Но допустим, и это нам удалось, скажем, используя робота-биолога, который сделал сотни тысяч попыток и нашел единственно верный вариант (о таких роботах мы писали в заметке «Начало новой эры »). Вам потребуется «выпотрошенная» яйцеклетка, в ядро которой вы сможете поместить хромосомы прежде, чем внедрять ее в суррогатную мать. И все, что мы знаем о природе и характере генетических заболеваний, позволяет добавить: малейшая ошибка приведет к полному краху. Словом, все это выглядит слишком сложным и вряд ли позволит в обозримом будущем клонировать хотя бы мамонта. Возможно, проще изобрести машину времени.

Хотя известный американский генетик Джордж Черч (George Church) предлагает совершенно оригинальный подход. Необязательно, — считает он, — клонировать целое древнее животное. В том же мамонте нас интересует волосатый слон, так что проще взять обычного слона и отключить гены, определяющие отсутствие у него волосяного покрова, а вместо них — внедрить в него те, которые отвечали за волосы у мамонта. Шаг за шагом к слону можно добавлять и другие характерные элементы мамонта — скажем, изменять форму бивней и так далее — пока мы более-менее не приблизимся к «первоисточнику». Метод тоже более чем спорный — ведь мы, фактически, тем самым не восстанавливаем исчезнувшие виды, а создаем новые.

Да и нужно ли все это? Многие ученые склоняются к тому, что сложнейшие проблемы, с которыми связано «оживление» некогда вымерших видов, не стоят того. Представим, что мы восстановим тех же птиц моа — влияние их на экосистему современной Новой Зеландии будет, скорее всего, глубоко разрушительным. А тратить колоссальные усилия и средства лишь для того, чтобы получить несколько птиц для зоопарка, кажется верхом расточительности. Об этических вопросах клонирования, скажем, неандертальцев, и вовсе говорить трудно. Как мудро замечают некоторые специалисты, чем восстанавливать потерянное — лучше заняться сохранением еще имеющегося. И мы не можем с ними не согласиться.

Фильм знаменитого режиссера С. Спилберга об острове, где в парке развлечений бродят клонированные гигантские ящеры, видел, наверное, каждый наш читатель. В свое время после просмотра кинокартины многие задались вопросом: клон динозавра - это миф или реальность?

Самое интересное заключается в том, что вопрос сей заинтересовал не только досужих зевак. Проблемой клонирования вплотную занялись ученые-генетики, финансируемые очень состоятельными людьми.

ДНК динозавров уже нет

Миллиардер из Австралии Клайв Палмер, прославившийся созданием копии печально известного судна «Титаник», «загорелся» идеей создать свой парк с гигантскими ящерами. Для этого нужно всего лишь получить клон этих доисторических существ, но по силам ли такая задача человеку, даже при наличии туго набитого кошелька (пардон, чемодана) денег? К сожалению, нет, ответили ученые.

Длительное время австралийские исследователи работали над проблемой сохранения ДНК в костях древних птиц и вероятностью его получения. Испытания проводились над костями древних птиц, именуемых моа.

Когда-то эти гиганты населяли Новую Зеландию, но пятьсот лет назад были практически уничтожены местным населением. Учеными-генетиками исследовались кости, возраст которых доходил до 8-ми тысяч лет и более. Оказалось, что молекулы ДНК распадались в костях довольно быстро. Через полтора миллиона лет генетический материал не может использоваться для прочтения, а за семь миллионов лет распадается до конца. И даже древние насекомые, заключенные в янтарь, никаким ДНК не обладают.

Самые известные динозавры

Тираннозавр (он же тираннозавр Рекс). Это непревзойденный хищник, настоящая машина для убийства. Старина Рэкс знаком каждому, кто смотрел «Парк Юрского периода». Считается, что при своих громадных габаритах ящер был способен развивать скорость до 60 км/час.

Диплодок . Этот мирный травоядный ящер обладал внушительными размерами - длина его тела доходила до 40-ка метров! Большую часть жизни диплодоки проводили в воде, а на сушу они выбирались, чтобы принять пищу или отложить яйца.

Трицератопс . Характерной чертой этого массивного динозавра являются три рога и ажурный «воротник» вокруг шеи. Внешность трицератопса имела некоторое сходство с современным носорогом. Этот динозавр весил около 12 тонн, он относился к травоядным.

Птеродактиль . Представитель авиации Юрского периода. Что можно сказать об этом ящере? Он имел довольно большой клюв с зубами, а размах крыльев «птички» достигал 12-ти метров. Птеродактиль мог прямо на лету выхватывать рыбу из воды, благодаря ловким лапам с «пальцами».

Аллозавр . Еще один страшный хищник, атакующий свою жертву в прыжке. Челюсть аллозавра насчитывала примерно 70 зубов, длиной от 10 до 15 см. Длинный и мускулистый хвост помогал хищнику сохранять равновесие при ходьбе и беге.

Плезиозавр . Это водный ящер с невероятно длинной шеей. Некоторые считают, что знаменитое чудовище озера Лох-Несс может оказаться потомком плезиозавра. Основным рационом этого ящера была рыба. Плезиозавр имел большие ласты, что позволяло ему маневрировать в водной среде.

Куриные предки могли больно укусить

Никто даже и не сомневается, что научные исследования в области палеонтологии будут продолжаться, но вывод уже сделан. Он говорит нам о том, что парк развлечений с гигантскими ящерами создать невозможно. Но расстраиваться не стоит! Вымерших гигантов можно оживить другим способом.

Как часто мы употребляем в пищу куриное мясо? А ведь даже на минуту не задумываемся, что это мясо потомка доисторического ящера. Забавно, что наша курица и древний монстр имеют схожий ДНК, а куриный зародыш-эмбрион снабжен большим чешуйчатым хвостом и саблезубыми челюстями. Какая же задача стоит перед учеными-генетиками в настоящее время? У них появилась возможность изучения генной информации птицы для получения динозавра.

Относительно недавно американские исследователи пришли к выводу, что состав крови страуса сильно напоминает состав крови гигантских ящеров. И это открытие дает надежду на получение ДНК этих вымерших особей. По всей вероятности, нас ожидает много чего интересного. И, может быть, мы сможем увидеть своими глазами настоящий «парк динозавров».

В фильме «Парк Юрского периода» учёный научился клонировать динозавров и на необитаемом острове создал целый парк развлечений, в котором вживую можно было увидеть живое древнее животное. Однако гипотеза о возможности клонирования динозавров из ископаемых останков, которая была столь актуальна после выхода на экраны фильма «Парк Юрского периода», в конце концов оказалась несостоятельной.

Австралийские учёные под руководством Мортена Аллентофта и Майкла Банса из университета Мердока (штат Западная Австралия) доказали, что «воссоздать» живого динозавра невозможно.

Исследователи провели радиоуглеродное исследование костной ткани, взятой из окаменелых костей 158 вымерших птиц моа. Эти уникальные и огромные птицы обитали в Новой Зеландии, но ещё 600 лет назад они были полностью уничтожены аборигенами маори. В результате исследований, учёные выяснили, что количество ДНК в костной ткани уменьшается с течением времени – каждый 521 год число молекул сокращается наполовину.

Последние молекулы ДНК исчезают из костной ткани примерно через 6,8 миллиона лет. При этом последние динозавры исчезли с лица земли в конце Мелового периода, то есть около 65 миллионов лет назад – задолго до критического для ДНК порога в 6,8 миллиона лет, и в костной ткани останков, которые удаётся найти археологам, молекул ДНК не осталось.

«В результате мы выяснили, что количество ДНК в костной ткани, если её содержать при температуре 13,1 градуса Цельсия, каждые 521 год уменьшается наполовину», – рассказал руководитель группы исследователей Майк Банс.

«Мы экстраполировали эти данные применительно к другим, более высоким и низким температурам и установили, что если содержать костную ткань при температуре минус 5 градусов, то последние молекулы ДНК исчезнут примерно через 6,8 млн лет», – добавил он.

Достаточно длинные фрагменты генома можно найти лишь в замороженных костях возрастом не более миллиона лет.

Кстати, на сегодняшний день самые древние образцы ДНК были выделены из останков животных и растений, найденных в вечной мерзлоте. Возраст найденных останков составляет около 500 тысяч лет.

Стоит отметить, что учёные будут проводить дальнейшие исследования в этой области, так как различия в возрасте останков отвечают лишь за 38,6 % расхождений в степени разрушения ДНК. На скорость распада ДНК влияет множество факторов, среди которых условия хранения останков после раскопок, химический состав почвы и даже время года, в которое погибло животное.

То есть есть шанс, что в условиях вечных льдов или подземных пещер период полураспада генетического материала окажется дольше, чем предполагают генетики.

А клонировать мамонта можно?

Учёные Якутского Северо-Восточного федерального университета и Сеульского центра исследований стволовых клеток подписали соглашение о совместной работе над клонированием мамонта. Возродить древнее животное учёные попытаются с помощью останков мамонта, найденного в вечной мерзлоте. Мамонту всего около 60 000 лет и благодаря холоду он практически полностью сохранился. Для эксперимента был выбран современный индийский слон, так как его генетический код максимально схож с ДНК мамонтов.

По примерным прогнозам учёных, итоги эксперимента будут известны не ранее чем через 10–20 лет.

Тема клонирования человека развивается не столько в научном ключе, сколько в социальном и этическом, вызывая споры на тему биологической безопасности, самоидентификации «нового человека», возможности появления неполноценных людей, порождая также религиозные споры. При этом эксперименты по клонированию животных проводятся и имеют примеры успешного завершения.

Первый в мире клон – головастик – был создан ещё в 1952 году. Одними из первых успешное клонирование млекопитающего осуществили советские исследователи ещё в 1987 году. Это была обыкновенная домовая мышь.

Самой яркой вехой в истории клонирования живых существ стало появление на свет овечки Долли – это первое клонированное млекопитающее животное, полученное путём пересадки ядра соматической клетки в цитоплазму яйцеклетки, лишённой собственного ядра. Овца Долли являлась генетической копией овцы-донора.

Если в естественных условиях каждый организм сочетает в себе генетические признаки отца и матери, то у Долли был только один генетический «родитель» – овца-прототип. Эксперимент был поставлен Яном Вилмутом и Кейтом Кэмпбеллом в Рослинском институте в Шотландии в 1996 году и стал прорывом в технологиях.

Уже позже британскими и другими учёными были проведены эксперименты по клонированию различных млекопитающих, среди которых были лошади, быки, кошки и собаки.

Идея клонирования динозавров из ископаемых останков была особенно актуальна после выхода на экраны фильма «Парк Юрского периода», в котором рассказывается, как учёный научился клонировать динозавров и на необитаемом острове создал целый парк развлечений, в котором воочию можно было увидеть живое древнее животное.

Но ещё несколько лет назад австралийские учёные под руководством Мортена Аллентофта и Майкла Банса из университета Мердока (штат Западная Австралия) доказали, что «воссоздать» живого динозавра невозможно.

Исследователи провели радиоуглеродное исследование костной ткани, взятой из окаменелых костей 158 вымерших птиц моа. Эти уникальные и огромные птицы обитали в Новой Зеландии, но ещё 600 лет назад они были полностью уничтожены аборигенами маори. В результате учёные выяснили, что количество ДНК в костной ткани уменьшается с течением времени — каждый 521 год число молекул сокращается наполовину.

Последние молекулы ДНК исчезают из костной ткани примерно через 6,8 миллиона лет. При этом последние динозавры исчезли с лица земли в конце Мелового периода, то есть около 65 миллионов лет назад — задолго до критического для ДНК порога в 6,8 миллиона лет, и в костной ткани останков, которые удаётся найти археологам, молекул ДНК не осталось.

«В результате мы выяснили, что количество ДНК в костной ткани, если её содержать при температуре 13,1 градуса Цельсия, каждые 521 год уменьшается наполовину», — рассказал руководитель группы исследователей Майк Банс .

«Мы экстраполировали эти данные применительно к другим, более высоким и низким температурам и установили, что если содержать костную ткань при температуре минус 5 градусов, то последние молекулы ДНК исчезнут примерно через 6,8 млн лет», — добавил он.

Достаточно длинные фрагменты генома можно найти лишь в замороженных костях возрастом не более миллиона лет.

Кстати, на сегодняшний день самые древние образцы ДНК были выделены из останков животных и растений, найденных в вечной мерзлоте. Возраст найденных останков составляет около 500 тысяч лет.

Стоит отметить, что учёные будут проводить дальнейшие исследования в этой области, так как различия в возрасте останков отвечают лишь за 38,6 % расхождений в степени разрушения ДНК. На скорость распада ДНК влияет множество факторов, среди которых условия хранения останков после раскопок, химический состав почвы и даже время года, в которое погибло животное.

То есть есть шанс, что в условиях вечных льдов или подземных пещер период полураспада генетического материала окажется дольше, чем предполагают генетики.

Эренхот, город динозавров. Фото: АиФ / Григорий Кубатьян

А мамонта — можно?

Сообщения в том, что учёные нашли подходящие для клонирования останки появляются регулярно. Несколько лет назад учёные Якутского Северо-Восточного федерального университета и Сеульского центра исследований стволовых клеток подписали соглашение о совместной работе над клонированием мамонта. Возродить древнее животное учёные планировали с помощью биологического материала, найденного в вечной мерзлоте.

Для эксперимента был выбран современный индийский слон, так как его генетический код максимально схож с ДНК мамонтов. Учёные прогнозировали, что результаты эксперимента будут известны не ранее чем через 10-20 лет.

В этом году снова появились сообщения от учёных из Северо-Восточного федерального университета, они сообщили об обнаружении мамонта, жившего в Якутии 43 тысячи лет назад. Собранный генетический материал позволяет рассчитывать, что сохранились неповреждённые ДНК, но эксперты настроены скептически — ведь для клонирования требуются очень длинные цепочки ДНК.

Живые клоны

Тема клонирования человека развивается не столько в научном ключе, сколько в социальном и этическом, вызывая споры на тему биологической безопасности, самоидентификации «нового человека», возможности появления неполноценных людей, порождая также религиозные споры. При этом эксперименты по клонированию животных проводятся и имеют примеры успешного завершения.

Первый в мире клон — головастик — был создан ещё в 1952 году. Одними из первых успешное клонирование млекопитающего (домовой мыши) осуществили советские исследователи ещё в 1987 году.

Самой яркой вехой в истории клонирования живых существ стало появление на свет овечки Долли — это первое клонированное млекопитающее животное, полученное путём пересадки ядра соматической клетки в цитоплазму яйцеклетки, лишённой собственного ядра. Овца Долли являлась генетической копией овцы-донора клетки (то есть генетическим клоном).

Если в естественных условиях каждый организм сочетает в себе генетические признаки отца и матери, то у Долли был только один генетический «родитель» — овца-прототип. Эксперимент был поставлен Яном Вилмутом и Кейтом Кэмпбеллом в Рослинском институте в Шотландии в 1996 году и стал прорывом в технологиях.

Уже позже британскими и другими учёными были проведены эксперименты по клонированию различных млекопитающих, среди которых были лошади, быки, кошки и собаки.