Тормозной постсинаптический потенциал обладает свойством. В23

В возбуж­дающих синапсах нервной системы медиатором может являться ацетилхолин, норадреналин, дофамин, серотонин, глугаминовая кисло­та, вещество Р, а также большая группа других веществ, являющих­ся, если не медиаторами в прямом значении, то во всяком случае модуляторами (меняющими эффектиьность) синаптической передачи. Возбуждающие медиаторы вызывают появление на постсинаптичес­кой мембраневозбуждающего постсинаптического потенциала (ВПСП) . Его формирование обусловлено тем, что медиатор-рецепторный комплекс активирует Na- каналы мембраны (а также веро­ятно и Са-каналы) и вызывает за счет поступления натрия внутрь клетки деполяризацию мембраны. Одновременно происходит и уменьшение выхода из клетки ионов К + Амплитуда одиночного ВПСП однако довольно мала, и для уменьшения заряда мембраны до критического уровня деполяризации необходима одновременная активация нескольких возбуждающих синапсов.

ВПСП, образуемые на постсинаптической мембране этих синапсов, способны суммиро­ваться, т.е. усиливать друг друга, приводя к росту амплитуды ВПСП (пространственная суммация ).

Растет амплитуда ВПСП и при уве­личении частоты поступающих к синапсу нервных импульсов (вре­менная суммация ), что повышает число выводимых в синаптическую щель квантов медиатора.

Процесс спонтанной регенеративной деполяризации возникает в нейроне обычно в месте отхождения от тела клетки аксона, в так называемом аксонном холмике, где аксон еше не покрыт миелином и порог возбуждения наиболее низкий. Таким образом, ВПСП, возникающие в разных участках мембраны нейрона и на его дендритах, распространяются к аксонному холмику, где суммируются, деполяризуя мембрану до критического уровня и приводя к появ­лению потенциала действия.

Тормоз­ной постсинаптический потенциал (ТПСП) В тормозных синапсах обычно действуют другие, тормозные, ме­диаторы. Среди них хорошо изученными являются аминокислота глицин (тормозные синапсы спинного мозга), гамма-аминомасляная кислота (ГАМК) - тормозной медиатор в нейронах головного мозга. Вместе с тем, тормозной синапс может иметь тот же медиатор, что и возбуждающий, но иную природу рецепторов постсинаптической мембраны. Так, для ацетилхолина, биогенных аминов и аминокислот на постсинаптической мембране разных синапсов могут существо­вать как минимум два типа рецепторов, и, следовательно, разные медиатор-рецепторные комплексы способны вызывать различную реакцию хемочувствительных рецепторуправляемых каналов. Для тор­мозного эффекта такой реакцией может являться активация кали­евых каналов, что вызывает увеличение выхода ионов калия наружу и гиперполяризацию мембраны. Аналогичный эффект во многих тормозных синапсах имеет активация каналов для хлора, увеличи­вающая его транспорт внутрь клетки. Возникающий при гиперполя­ризации сдвиг мембранного потенциала получил название тормоз­ного постсинаптического потенциала (ТПСП) . На рис.3.5 показаны отличительные черты ВПСП и ТПСП. Увеличение частоты нервных импульсов, приходящих к тормозному синапсу, также как и в воз­буждающих синапсах, вызывает нарастание числа квантов тормозно­го медиатора, выделяющихся в синаптическую щель, что, соответ­ственно, повышает амплитуду гиперполяризационного ТПСП. Вместе с тем, ТПСП не способен распространяться по мембране и суще­ствует только локально.



В результате ТПСП уровень мембранного потенциала удаляется от критического уровня деполяризации и возбуждение становится либо вообще невозможным, либо для возбуждения требуется суммация значительно больших по амплитуде ВПСП, т.е. наличие значительно больших возбуждающих токов. При одновременной активации возбуждаюших и тормозных синапсов резко падает амплитуда ВПСП, так как деполяризующий поток ионов Na + компенсируется одновре­менным выходом ионов К + в одних видах тормозных синапсов или входом ионов СГ в других, что называют шунтированием ВПСП .

Под влиянием некоторых ядов может происходить блокада тор­мозных синапсов в нервной системе, что вызывает безудержное возбуждение многочисленных рефлекторных аппаратов и проявляется в виде судорог. Так действует стрихнин, конкурентно связывающий рецепторы постсинаптической мембраны и не позволяющий им вза­имодействовать с тормозным медиатором. Столбнячный токсин, нарушающий процесс освобождения тормозного медиатора, также угнетает тормозные синапсы.

Принято различать два типа торможения в нервной системе: первичное и вторичное

Все особенности распространения возбуждения в ЦНС объясняются ее нейронным строением: наличием химических синапсов, многократным ветвлением аксонов нейронов, наличием замкнутых нейронных путей. Этими особенностями являются следующие.

1. Иррадиация (дивергенция) возбуждения в ЦНС. Она объясняется ветвлением аксонов нейронов, их способностью устанавливать многочисленные связи с другими нейронами, наличием вставочных нейронов, аксоны которых также ветвятся (рис. 4.4, а).

Иррадиацию возбуждения можно наблюдать в опыте на спинальной лягушке, когда слабое раздражение вызывает сгибание одной конечности, а сильное - энергичные движения всех конечностей и даже туловища. Дивергенция расширяет сферу действия каждого нейрона. Один нейрон, посылая импульсы в кору большого мозга, может участвовать в возбуждении до 5000 нейронов.

Рис. 4.4. Дивергенция афферентных дорсальных корешков на спинальные нейроны, аксоны которых, в свою очередь, ветвятся, образуя многочисленные коллатерали (в), и конвергенция эфферентных путей от различных отделов ЦНС на α-мотонейрон спинного мозга (6)

1. Конвергенция возбуждения (принцип общего конечного пути) - схождение возбуждения различного происхождения по нескольким путям к одному и тому же нейрону или нейронному пулу (принцип шеррингтоновской воронки). Конвергенция возбуждения объясняется наличием многих аксонных коллатералей, вставочных нейронов, а также тем, что афферентных путей в несколько раз больше, чем эфферентных нейронов. На одном нейроне ЦНС может располагаться до 10 000 синапсов. Явление конвергенции возбуждения в ЦНС имеет широкое распространение. Примером может служить конвергенция возбуждения на спинальном мотонейроне. Так, к одному и тому же спинальному мотонейрону подходят первичные афферентные волокна (рис. 4.4, б), а также различные нисходящие пути многих вышележащих центров ствола мозга и других отделов ЦНС. Явление конвергенции весьма важно: оно обеспечивает, например, участие одного мотонейрона в нескольких различных реакциях. Мотонейрон, иннервирующий мышцы глотки, участвует в рефлексах глотания, кашля, сосания, чиханья и дыхания, образуя общий конечный путь для многочисленных рефлекторных дуг. На рис. 4.4, я показаны два афферентных волокна, каждое из которых отдает коллатерали к 4 нейронам таким образом, что 3 нейрона из общего их числа, равного 5, образуют связи с обоими афферентными волокнами. На каждом из этих 3 нейронов конвергируют два афферентных волокна.

На один мотонейрон может конвергировать множество коллатералей аксонов, до 10 000-20 000, поэтому генерация ПД в каждый момент зависит от общей суммы возбуждающих и тормозящих синаптических влияний. ПД возникают лишь в том случае, если преобладают возбуждающие влияния. Конвергенция может облегчать процесс возникновения возбуждения на общих нейронах в результате пространственной суммации подпороговых ВПСП либо блокировать его вследствие преобладания тормозных влияний (см. раздел 4.8).

3. Циркуляция возбуждения по замкнутым нейронным цепям. Она может продолжаться минуты и даже часы (рис. 4.5).

Рис. 4.5. Циркуляция возбуждения в замкнутых нейронных цепях по Лоренто де-Но (а) и по И.С.Беритову (б). 1,2,3- возбуждающие нейроны

Циркуляция возбуждения - одна из причин явления последействия, которое будет рассмотрено далее (см. раздел 4.7). Считают, что циркуляция возбуждения в замкнутых нейронных цепях - наиболее вероятный механизм феномена кратковременной памяти (см. раздел 6.6). Циркуляция возбуждения возможна в цепи нейронов и в пределах одного нейрона в результате контактов разветвлений его аксона с собственными дендритами и телом.

4. Одностороннее распространение возбуждения в нейронных цепях, рефлекторных дугах. Распространение возбуждения от аксона одного нейрона к телу или дендритам другого нейрона, но не обратно объясняется свойствами химических синапсов, которые проводят возбуждение только в одном направлении (см. раздел 4.3.3).

5. Замедленное распространение возбуждения в ЦНС по сравнению с его распространением по нервному волокну объясняется наличием на путях распространения возбуждения множества химических синапсов. Время проведения возбуждения через синапс затрачивается на выделение медиатора в синаптическую щель, распространение его до постсинаптической мембраны, возникновение ВПСП и, наконец, ПД. Суммарная задержка передачи возбуждения в синапсе достигает примерно 2 мс. Чем больше синапсов в нейрональной цепочке, тем меньше общая скорость распространения по ней возбуждения. По латентному времени рефлекса, точнее по центральному времени рефлекса, можно ориентировочно рассчитать число нейронов той или иной рефлекторной дуги.

6. Распространение возбуждения в ЦНС легко блокируется определенными фармакологическими препаратами, что находит широкое применение в клинической практике. В физиологических условиях ограничения распространения возбуждения по ЦНС связаны с включением нейрофизиологических механизмов торможения нейронов.

Рассмотренные особенности распространения возбуждения дают возможность подойти к пониманию свойств нервных центров.

4. СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О ФОРМАХ И МЕХАНИЗМАХ ТОРМОЖЕНИЯ В ЦНС. ФУНУЦИОНАЛЬНОЕ ЗНАЧЕНИЕ РАЗЛИЧНЫХ ФОРМ ТОРМОЖЕНИЯ.

Торможение в ЦНС – это процесс ослабления или прекращения передачи нервных импульсов. Торможение ограничивает распространение возбуждения (иррадиацию) и позволяет производить тонкую регуляцию деятельности отдельных нейронов и пαередачи сигналов между ними. Чаще всего тормозными нейронами являются вставочные нейроны. Именно благодаря взаимодействию процессов возбуждения и торможения в ЦНС осуществляется объединение деятельности отдельных систем организма в единое целое (интеграция) и согласование, координация их деятельности. Например, концентрацию внимания можно рассматривать как ослабление иррадиации и усиление индукции. Процесс этот совершенствуется с возрастом. Значение торможения заключается также в том, что от всех органов чувств, от всех рецепторов в мозг непрерывно идет поток сигналов, однако мозг реагирует не на все, а только на наиболее значимые в данный момент. Торможение позволяет более точно скоординировать работу разных органов и систем организма. С помощью пресинаптического торможения ограничивается поступление отдельных видов нервных импульсов к нервным центрам. Постсинаптическое торможение ослабляет рефлекторные реакции, которые в данный момент являются ненужными или несущественными. Оно лежит, например, в основе координации работы мышц.

Различают первичное и вторичное торможение. Первичное торможение развивается первично, без предварительного возбуждения и проявляется в гиперполяризации нейрональной мембраны при действии тормозных нейромедиаторов. Например, реципрокное торможение при действии тормозных нейромедиаторов.К первичному торможению относятся пресинаптическое и постсинаптическое торможение, ко вторичному – пессимальное и торможение вслед за возбуждением. Вторичное торможение возникает без участия специальных тормозных структур, как следствие избыточной активации возбуждающих нейронов (торможение Введенского). Оно играет охранительную роль. Вторичное торможение выражается в стойкой деполяризации нейрональных мембран, превышающей критический уровень и вызывающей инактивацию натриевых каналов. Центральное торможение (И.М.Сеченов) – это торможение, вызываемое возбуждением и проявляющееся в подавлении другого возбуждения.

Классификация торможения:

I. По локализации места приложения в синапсе:

1 – пресинаптическое торможение – наблюдается в аксо-аксональных синапсах, блокируя распространение возбуждения по аксону (в структурах мозгового ствола, в спинном мозге). В области контакта выделяется тормозной медиатор (ГАМК), вызывающий гиперполяризацию, что нарушает проведение волны возбуждения через этот участок.

2 – постсинаптическое торможение – основной вид торможения, развивается на постсинаптической мембране аксосоматических и аксодендрических синапсов под влиянием выделившихся ГАМК или глицина. Действие медиатора вызывает в постсинаптической мембране эффект гиперполяризации в виде ТПСП, что приводит к урежению или полному прекращению генерации ПД.

II. По эффектам в нейронных цепях и рефлекторных дугах:

1 – реципрокное торможение – осуществляется для координации активности мышц, противоположных по функции (Шеррингтон). Например, сигнал от мышечного веретена поступает с афферентного нейрона в спинной мозг, где переключается на α-мотонейрон сгибателя и одновременно на тормозной нейрон, который тормозит активность α-мотонейрона разгибателя.

2 – возвратное торможение – осуществляется для ограничения излишнего вобуждения нейрона. Например, α-мотонейрон посылает аксон к соответствующим мышечным волокнам. По пути от аксона отходит коллатераль, которая возвращается в ЦНС – она заканчивается на тормозном нейроне (клетка Реншоу) и активирует ее. Тормозной нейрон вызывает торможение α-мотонейрона, который запустил всю эту цепочку, то есть α-мотонейрон сам себя тормозит через систему тормозного нейрона.

3 – латеральное торможение (вариант возвратного). Пример: фоторецептор активирует биполярную клетку и одновременно рядом расположенный тормозной нейрон, блокирующий проведение возбуждения от соседнего фоторецептора к ганглиозной клетке («вытормаживание информации».

III. По химической природе нейромедиатора :

1 – ГАМКергическое,

2 – глицинергическое,

3 – смешанное.

IV. Классификация видов торможения по И.П.Павлову (таблица 1)

Таблица 1 – Виды торможения (по И.П.Павлову)

Тип торможения Вид торможения Характеристика Биологическое значение
Безусловное торможение Внешнее Отвлечение при действии неожиданных новых стимулов Смена доминанты, переключение на сбор новой информации
Запредельное Результат утомления «Охранительное», защита нервной системы от повреждения
Условное Угасательное Ослабление реакции при неподкреплении условного стимула Отказ от неэффективных поведенческих программ, забывание неиспользуемых программ
Дифференцировочное Прекращение реакции на сходный с условным, но неподкрепляемый стимул Тонкое различение близких по параметрам сенсорных сигналов
Условный тормоз При предъявлении стимула, сигнализирующего, что вслед за условным раздражителем подкрепления не будет «Запреты», остановка текущей деятельности при определенных условиях
Запаздывательное Во время паузы между условным сигналом и запаздывающим подкреплением «Ожидание»

Тормозные синапсы открывают в основном хлорные каналы, что позволяет ионам хлора легко проходить через мембрану. Чтобы понять, как тормозные синапсы тормозят постсинаптический нейрон, нужно вспомнить, что мы знаем о потенциале Нернста для ионов Сl-. Мы рассчитали, что он равен примерно -70 мВ. Этот потенциал отрицательнее, чем мембранный потенциал покоя нейрона, равный -65 мВ. Следовательно, открытие хлорных каналов будет способствовать движению отрицательно заряженных ионов Сl- из внеклеточной жидкости внутрь. Это сдвигает мембранный потенциал в направлении более отрицательных значений по сравнению с покоем приблизительно до уровня -70 мВ.

Открытие калиевых каналов позволяет положительно заряженным ионам К+ двигаться наружу, что приводит к большей отрицательности внутри клетки, чем в покое. Таким образом, оба события (вход ионов Сl- в клетку и выход ионов К+ из нее) увеличивают степень внутриклеточной отрицательности. Этот процесс называют гиперполяризацией. Увеличение отрицательности мембранного потенциала по сравнению с его внутриклеточным уровнем в покое тормозит нейрон, поэтому выход значений отрицательности за пределы исходного мембранного потенциала покоя называют тормозным постсинаптическим потенциалом (ТПСП).

На рисунке показано влияние активации тормозных синапсов , позволяющих ионам Сl-входить в клетку и/или ионам К+ выходить из нее, на мембранный потенциал. При этом он сдвигается от значения -65 мВ до более отрицательного значения -70 мВ. Этот мембранный потенциал на 5 мВ отрицательнее, чем в покое, и, следовательно, проведение нервного сигнала через синапс тормозит ТПСП, равный -5 мВ.

Пресинаптическое торможение

Кроме постсинаптического торможения , вызываемого тормозными синапсами, действующими на мембране нейрона, часто происходит торможение другого типа, которое развивается на пресинаптических терминалях, прежде чем сигнал достигает синапса. Этот тип торможения, называемый пресинаптическим торможением, осуществляется следующим путем.

Причиной пресинаптического торможения является выделение тормозного медиатора на наружную поверхность пресинаптических нервных волокон, прежде чем их собственные окончания достигнут поверхности постсинаптического нейрона. В большинстве случаев тормозным медиатором является ГАМК. При этом развивается специфический эффект, связанный с открытием анионных каналов, что позволяет большому числу ионов СГ диффундировать в терминальное волокно. Отрицательные заряды этих ионов тормозят синаптическое проведение, нейтрализуя большую часть возбуждающего эффекта положительно заряженных ионов Na+, которые также входят в терминальные волокна, когда здесь возникает потенциал действия.

Пресинаптическое торможение происходит во многих сенсорных путях нервной системы. Смежные сенсорные волокна часто взаимно тормозят друг друга, что сводит к минимуму боковое распространение и смешивание сигналов в чувствительных трактах.

Медиатор, находящийся в пузырьках, выделяется в синаптическую щель с помощью экзоцитоза Его выделение происходит небольшими порциями – квантами . Небольшое количество квантов выходит из окончания и в состоянии покоя. Когда нервный импульс, т.е. ПД, достигает пресинаптического окончания, происходит деполяризация его пресинаптической мембраны. Открываются ее кальциевые каналы и ионы кальция входят в синаптическую бляшку. Начинается выделение большого количества квантов нейромедиатора. Молекулы медиатора диффундируют через синаптическую щель к постсинаптической мембране и взаимодействуют с её хеморецепторами. В результате образования комплексов медиатор-рецептор, в субсинаптической мембране начинается синтез так называемых вторичных посредников (в частности, цАМФ). Эти посредники активируют ионные каналы постсинаптической мембраны. Поэтому такие каналы называют хемозависимыми или рецепторуправляемыми. Т.е. они открываются при действии ФАВ на хеморецепторы. В результате открывания каналов изменяется потенциал субсинаптической мембраны. Такое изменение называется постсинаптическим потенциалом.

В ЦНС возбуждающими являются холин-, адрен-, дофамин-, серотонинергические синапсы и некоторые другие. При взаимодействии их медиаторов с соответствующими рецепторами, открываются хемозависимые натриевые каналы. Ионы натрия входят в клетку через субсинаптическую мембрану. Происходит ее местная или распространяющаяся деполяризация. Эта деполяризация называется возбуждающим постсинаптическим потенциалом (ВПСП).

Тормозными являются глицин- и ГАМК-ергические синапсы. При связывании медиатора с хеморецепторами, активируются калиевые или хлорные хемозависимые каналы. В результате ионы калия выходят из клетки через мембрану.

Ионы хлора входят через нее. Возникает только местная гиперполяризация субсинаптической мембраны . Она называется тормозным постсинаптическим потенциалом (ТПСП).

Величина ВПСП и ТПСП определяется количеством квантов медиатора, выделившихся из терминали, а, следовательно, частотой нервных импульсов. Т.е. синаптическая передача не подчиняется закону "все или ничего". Если количество выделившегося возбуждающего медиатора достаточно велико, то в субсинаптической мембране может генерироваться распространяющийся ПД. ТПСП, независимо от количества медиатора не распространяется за пределы субсинаптической мембраны.

ВОПРОС 26. Понятие о нервном центре, его функциях и свойствах

Н. центр – совокупность структур ЦНС, координированная деятельность которых обеспечивает регуляцию отдельных функций организма или определенный рефлекторный акт. Функциональный нервный центр может быть локализован в разных анатомических структурах. Например дыхат центр представлен нервными клетками, расположенными в спинном, продолговатом, промежуточном мозге, коре головного мозга.

В зависимости от выполняемой функции различают:

чувствительные нервные центры;

нервные центры вегетативных функций;

двигательные нервные центры и др.

Свойства :

2)Иррадиация возбуждения . В н центрах изменяется направление распространения возбуждения в зависимости от силы раздражителя и функционального состояния центральных нейронов. Увеличение силы раздражителя приводит к расширению области вовлекаемых в возбуждение центральных нейронов – т. е. иррадиации возбуждения.

3)Суммация возбуждения . Процесс пространственной суммации афферентных потоков возбуждения от разл участков рецептивного поля облегчается благодаря наличию на мембране н клетки сотен и тысяч синаптичаских контактов. Процесс временной суммации в ответ на многократное возбуждение одних и тех же рецепторов обусловлены суммацией ВПСП на постсинаптической мембране.

ПОЯСНЯЮ : По́стсинапти́ческий потенциа́л (ПСП) - это вре́менное изменение потенциала постсинаптической мембраны в ответ на сигнал, поступивший с пресинаптического нейрона. Различают:

возбуждающий постсинаптический потенциал (ВПСП), обеспечивающий деполяризацию постсинаптической мембраны, и

тормозный постсинаптический потенциал (ТПСП), обеспечивающий гиперполяризацию постсинаптической мембраны.

Отдельные ПСП обычно невелики по амплитуде и не вызывают потенциалов действия в постсинаптической клетке, однако в отличие от потенциалов действия они градуальны и могут суммироваться. Выделяют два варианта суммации:

временная - объединение пришедших по одному каналу сигналов (при поступлении нового импульса до затухания предшествующего)

пространственная - наложение ВПСП соседних синапсов

4) Наличие задержки .

Длительность рефлекторной реакции зависит от 2 факторов: cкорости движения возбуждения по нервным проводникам и времени распространения возбуждения через синапс. Основное время рефлекса приходится на синаптическую передачу возбуждения- синаптическая задержка. У человека она равна примерно 1 мс.

5)Высокая утомляемость . Длительное повторное раздражение рецептивного поля рефлекса приводит к ослаблению рефлекторной реакции вплоть до исчезновения. Это связано с деятельностью синапсов: истощение запаса медиатора, уменьшаются энергетических ресурсы, происходит адаптация постсинаптического рецептора к медиатору.

6)Тонус . В покое определенное количество нервных клеток находится в состоянии постоянного возбуждения и генерирует фоновые импульсные токи.

7)Пластичность . Функциональная подвижность нервного центра может модифицировать картину осуществляемых рефлекторных реакций.

8)Конвергенция . Нервные центры высших отделов мозга - мощные коллекторы афферентной информации. В них содержится много нервных клеток, реагирующих на разные стимулы (свет, звук и др.)

9) Интеграция в нервных центрах . Для осуществления сложных координированных приспособительных реакций организма происходит образование функциональных объединений нервных центров.

10) Свойство доминанты . Доминантный очаг – временно господствующий очаг повышенной возбудимости в н центре. В нем устанавливается определенный уровень стационарного возбуждения, способствующий суммированию ранее подпороговых возбуждений и переводу на оптимальный для данных условий ритм работы. Домин. Очаг угнетает соседние очаги возбуждения.

11) Цефализация н. системы . Тенденция к перемещению функций регуляции и координации в головные отделы ЦНС.

ВОПРОС 27. Явление суммации возбуждения в нервных центрах, ее виды, значение, механизм. Свойства ВПСП и их роль в формировании суммации. (Примечане автора: Ребят, я извеняюсь за эту хрень, но это все что я могла найти. В учебнике не нашла)

Суммация возбуждения. В работе нервных центров значительное место занимают процессы пространственной и временной суммации возбуждения, основным нервным субстратом которой является постсинаптическая мембрана. Процесс пространственной суммации афферентных потоков возбуждения облегчается наличием на мембране нервной клетки сотен и тысяч синаптических контактов. Процессы временной суммации обусловлены суммацией ВПСП на постсинаптической мембране.

В нервном волокне каждое одиночное раздражение (если оно не подпороговой и не свехпороговой силы) вызывает один импульс возбуждения. В нервных же центрах, как показал впервые И.М.Сеченов, одиночный импульс в афферентных волокнах обычно не вызывает возбуждения, т.е. не передается на эфферентные нейроны. Чтобы вызвать рефлекс необходимо быстрое нанесение допороговых раздражений одно за другим. Это явление получило название временной или последовательной суммации. Ее сущность состоит в следующем. Квант медиатора, выбрасываемого окончанием аксона при нанесении одного допорогового раздражения, слишком мал для того, чтобы вызвать возбуждающий постсинаптический потенциал, достаточный для критической деполяризации мембраны. Если же к одному и тому же синапсу идут быстро следующие один за другим допороговые импульсы, происходит суммирование квантов медиатора, и наконец его количество становится достаточным для возникновения возбуждающего постсинаптического потенциала, а затем и потенциала действия. Кроме суммации во времени, в нервных центрах возможна пространственная суммация. Она характеризуется тем, что если раздражать одно афферентное волокно раздражителем допороговой силы, то ответной реакции не будет, а если раздражать несколько афферентных волокон раздражителем той же допороговой силы, то возникает рефлекс, так как импульсы, приходящие с нескольких афферентных волокон суммируются в нервном центре.

Возбуждающий постсинаптический потенциал . В синапсах, в которых осуществляется возбуждение постсинаптической структуры, обычно происходит повышение проницаемости для ионов натрия. По градиенту концентрации Na+ входят в клетку, что вызывает деполяризацию постсинаптической мембраны. Эта деполяризация получила название: возбуждающий постсинаптический потенциал – ВПСП. ВПСП относится к локальным ответам и, следовательно, обладает способностью к суммации. Выделяют временную и пространственную суммацию.

Роль в суммации ;

Принцип временной суммации - заключается в том, что импульсы поступают к пресинаптическому окончанию с периодом меньшим, чем период ВПСП.

Сущность пространственной суммации заключается в одновременной стимуляции постсинаптической мембраны синапсами, расположенными близко друг от друга. В этом случае ВПСП каждого синапса суммируются.

Если величина ВПСП достаточно велика и достигает критического уровня деполяризации (КУД), то генерируется ПД. Однако не все участки мембраны обладают одинаковой способностью к генерации ВПСП. Так, аксонный холмик, являющийся начальным сегментом аксона относительно сомы, имеет приблизительно в 3 раза более низкий порог электрического раздражения. Следовательно, синапсы, расположенные на аксональном холмике, обладают большей возможностью к генерации ПД, чем синапсы дендритов и сомы. От аксонального холмика ПД распространяется в аксон, а также ретроградно в сому.

ВОПРОС 28.Явление трансформации ритма возбуждений в нервных центрах и его механизмы. Роль ВПСП и кольцевых связей в ЦНС . (Прим; Такая же херня что и с предыдущим вопросом - I’m sorryL)

Лат. transformatio - преобразование, превращение - одно из свойств проведения возбуждения в центре, заключающееся в способности нейрона изменять ритм приходящих импульсов. Особенно четко проявляется трансформация ритма возбуждения при раздражении афферентного волокна одиночными импульсами. На такой импульс нейрон отвечает серией импульсов. Это обусловлено возникновением длительного возбуждающего постсинаптического потенциала (роль ВПСП ), на фоне которого развивается несколько ликов (спайков- пиковых потенциалов). Другой причиной возникновения множественного разряда импульсов являются следовые колебания мембранного потенциала. Когда его величина достаточно велика, следовые колебания могут привести к достижению критического уровня деполяризации мембраны и обусловливают появление вторичных спайков. В нервных центрах может происходить и трансформация силы импульсов: слабые импульсы усиливаются, а сильные ослабевают.

ВОПРОС 29. Посттетаническая потенциация в нервных центрах.(Тут мало – но это все что было в учебнике)

Это интегративный феномен. При раздражении афферентного нерва стимулами с низкой частотой можно получить рефлекс определенной интенсивности. Если затем этот нерв подвергать высокочастотному ритмическому раздражению, то повторное редкое ритмическое раздражение приведет к резкому усилению реакции.

ВОПРОС 30. Одностороннее проведение возбуждения в нервных центрах. Роль синаптических структур .

Одностороннее проведение возбуждения . В рефлекторной дуге, включающей н центры, процесс возбуждения распространяется в одном направлении (от входа по афферентным путям к центру, затем по эфферентным путям к эффектору).

Роль синаптических структур .

В отличие от нервных и мышечных волокон, для которых характерен закон двухстороннего проведения, в синапсе возбуждение распространяется только в одном направлении – от пресинаптической клетки к постсинаптической.

31.Высокая утомляемость нервных центров :

Утомление -ослабление рефлекторной реакции вплоть до ее полного исчезновения, происходящее под действием длительного повторного раздражения рецептивного поля рефлекса. Высокая утомляемость связана с деятельностью синапсов, в которых запасы медиатора истощаются,уменьшаются энергетические ресурсы. а также высокая утомляемость нервных центров происходит из-за адаптации постсинаптических рецепторов к медиаторам.

32.тонус нервных центров и его механизмы:

Тонус -наличие определённой фоновой активности нервного центра. То есть,в покое, в отсутствие внешних раздражителей определенное количество нервных клеток находится в состоянии постоянного возбуждения, генерирует фоновые импульсные потоки. например, во сне в высших отделах мозга остаётся некоторое количество фоновоактивных нервных клеток, определяющих тонус соответствующего нервного центра.

ВПСП – возбуждающим постсинаптическим потенциалом

ТПСП – тормозным постсинаптическим потенциалом

ГАМК – гамма-аминомасляной кислоты

Си́напс - место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой. Служит для передачи нервного импульса между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться. Передача импульсов осуществляется химическим путём с помощью медиаторов или электрическим путём посредством прохождения ионов из одной клетки в другую.

Медиатор, находящийся в пузырьках, выделяется в синаптическую щель с помощью экзоцитоза. Его выделение происходит небольшими порциями – квантами . Небольшое количество квантов выходит из окончания и в состоянии покоя. Когда нервный импульс, т.е. ПД, достигает пресинаптического окончания, происходит деполяризация его пресинаптической мембраны. Открываются ее кальциевые каналы и ионы кальция входят в синаптическую бляшку. Начинается выделение большого количества квантов нейромедиатора. Молекулы медиатора диффундируют через синаптическую щель к постсинаптической мембране и взаимодействуют с её хеморецепторами. В результате образования комплексов медиатор-рецептор, в субсинаптической мембране начинается синтез так называемых вторичных посредников (в частности, цАМФ). Эти посредники активируют ионные каналы постсинаптической мембраны. Поэтому такие каналы называют хемозависимыми или рецепторуправляемыми. Т.е. они открываются при действии ФАВ на хеморецепторы. В результате открывания каналов изменяется потенциал субсинаптической мембраны. Такое изменение называется постсинаптическим потенциалом.

В ЦНС возбуждающими являются холин-, адрен-, дофамин-, серотонинергические синапсы и некоторые другие. При взаимодействии их медиаторов с соответствующими рецепторами, открываются хемозависимые натриевые каналы. Ионы натрия входят в клетку через субсинаптическую мембрану. Происходит ее местная или распространяющаяся деполяризация. Эта деполяризация называется возбуждающим постсинаптическим потенциалом (ВПСП).

Тормозными являются глицин- и ГАМК-ергические синапсы. При связывании медиатора с хеморецепторами, активируются калиевые или хлорные хемозависимые каналы. В результате ионы калия выходят из клетки через мембрану.

Ионы хлора входят через нее. Возникает только местная гиперполяризация субсинаптической мембраны . Она называется тормозным постсинаптическим потенциалом (ТПСП).

Величина ВПСП и ТПСП определяется количеством квантов медиатора, выделившихся из терминали, а, следовательно, частотой нервных импульсов. Т.е. синаптическая передача не подчиняется закону "все или ничего". Если количество выделившегося возбуждающего медиатора достаточно велико, то в субсинаптической мембране может генерироваться распространяющийся ПД. ТПСП, независимо от количества медиатора не распространяется за пределы субсинаптической мембраны.

В24. Фундаментальные принципы работы мозга. Свойства нервных центров: одностороннее поведение возбуждения, суммация, трансформация ритма, последействие, утомляемость, окклюзия, облегчение.

Великий русский ученый и по совместительству «дедушка русской физиологии» Иван Михайлович Сеченов первым доказал следующий неоспоримый теперь уже факт: если мы хотим познать человека, мы должны узнать психические механизмы, которые определяют наше существование. Таких механизмов, как оказалось, три. Эти три основополагающих принципа, определяющих работу мозга, а потому и всю нашу психическую жизнь - «в болезни и здравии», были открыты и детально изучены нашими соотечественниками. Благодаря И. П. Павлову выяснилось, что мы - это набор привычек, которые функционируют по принципу доминанты (сие открытие принадлежит А. А. Ухтомскому), а располагаются эти привычки в двух пластах психического - там, где правит сознание, и там, где правит бессознательное (о том, как они это делают, рассказал мировой общественности Л. С. Выготский). Вот, собственно, все это нам и надлежит уяснить.

Мозг – главнее, потому что:

Он мощнее и разнообразнее, чем осознаваемая человеком часть мыслительного процесса,

Он принимает решение самостоятельно без участия сознания, и мы не всегда понимаем, как он это делает,

Он с небольшим опозданием информирует сознание человека о принятом решении, но обманом старается успокоить «хозяина», создавая условия, при которых человеку покажется, что решение он принял в ходе серьёзного обдумывания.

Принципы работы мозга

Особенность работы мозга человека такова, что о норме в рамках этой темы следует говорить с большой осторожностью. Грань между гениальностью и патологией настолько тонка, что почти незаметна. Психические и нервные расстройства фиксируются уже настолько часто, что начали опережать по количеству сердечно-сосудистые заболевания и онкологию. Тем не менее, существуют нормативные показатели для работы мозговых волн, различные отклонения в регистрации которых дают возможность установить патологии развития.

Мозговые волны

«Мозговые волны» – это излучаемые мозгом электромагнитные волновые колебания малой интенсивности с диапазоном частоты от 1 до 40 герц. В норме они имеют следующие показатели:

Альфа-уровень работы мозга с частотой 8-13 Гц у 95% здоровых людей регистрируется в состоянии расслабленного бодрствования главным образом в областях затылка и темени.

Бета-ритм. Частота работы мозга 14-40 Гц. В норме имеет слабовыраженные колебания с амплитудой до 3-7 мкВ в областях передних и центральных извилин. Возникает при бодрствовании во время наблюдения или при концентрации на решении проблем.

Гамма-волна возникает при решении задач, требующих максимальной сосредоточенности. Колебания от 30-100 Гц в теменной, височной, фронтальной и прецентральной областях.

Дельта-ритм с колебаниями 1-4 Гц связан с медленными восстановительными процессами и низкой активностью.

Тета-ритм. Его частота – 4-8 Гц с регистрацией в гиппокампе и фронтальных зонах. Возникает при переходе расслабленного бодрствования в сонливость.

Принцип рефлекторной работы

Рефлекс – это реакция организма на раздражение рецепторов (чувствительных образований), выполнение которой происходит с участием нервной системы.

Рене Декартом в 17 веке был открыт рефлекторный принцип нервной деятельности в целом. А предположение о рефлекторной деятельности высших отделов мозга, то есть, принцип рефлекторной работы мозга был открыт И. Сеченовым уже в 19 веке. И. Павлов разработал пути экспериментального объективного исследования функций коры и методику выработки условных рефлексов на безусловные. Развивая эти представления, П. Анохин создал концепцию функциональной системы, в рамках которой утверждается, что в каждый момент времени складывается сложная система – временное объединение чувствительных рецепторов, нервных элементов структур головного мозга с исполнительными органами.

Свойство нервных центров: одностороннее проведение возбуждения, суммация, трансформация ритма, последействие, утомляемость, окклюзия, облегчение.

Свойства нервных центров. Полисинаптические связи. Это означает, что каждый нейрон имеет множественные контакты с другими нейронами. Наличие полисинаптических (множественных) контактов между нейронами нервного центра является основным свойством нервных центров, из которого исходят прочие свойства, как следствие полисинаптических связей между нейронами. Уже на уровне нервной цепи синапсами обеспечивается одностороннее проведение возбуждения. В нервном же центре за счёт множественных контактов между нейронами возбуждение может «гулять по кругу», не выходя за пределы нервного центра, а также его можно изменять.

(межклеточной передачи сигнала).

Тормозящие (ингибирующие) пресинаптические нейроны выделяют в синапс тормозные нейромедиаторы (например, такие, как ГАМК , глицин , серотонин , в зависимости от типа нейрона). Эти тормозные нейромедиаторы затем связываются с соответствующими специфическими «тормозными» постсинаптическими рецепторами. В результате активации этих тормозных рецепторов происходят изменения в активности постсинаптического нейрона, в частности открываются или закрываются ионные каналы (например, каналы ионов хлора в случае ГАМК-А рецептора или каналы ионов калия в случае 5-HT 1A -рецептора). Это приводит к изменению электрической проводимости мембраны постсинаптического нейрона. Генерируется электрический ток, который изменяет постсинаптический потенциал - постсинаптическая мембрана становится более электроотрицательной (более отрицательно заряженной). Если исходный потенциал мембраны находится между порогом покоя и порогом возникновения потенциала действия, то в результате воздействия этого ингибирующего потенциала может произойти деполяризация клетки. Тормозные постсинаптические потенциалы также приводят к изменению проницаемости мембраны для ионов хлора, поскольку в результате изменения потенциала мембраны изменяется электростатическая сила, воздействующая на хлорные каналы. Для измерения постстинаптических потенциалов в возбуждающих и тормозных синапсах могут использоваться микроэлектроды.

В целом, результирующий постсинаптический потенциал клетки зависит от комбинации факторов: типы и комбинации рецепторов и ионных каналов клетки, одновременно подвергающихся воздействию, характер воздействий (агонистический или антагонистический), исходный постсинаптический потенциал клетки, реверсный потенциал, порог возниковения потенциала действия, проницаемость ионных каналов клетки для тех или иных ионов, а также градиент концентрации ионов внутри и снаружи клетки. Вся эта совокупность факторов в конечном счёте и определяет, будет ли клетка в состоянии возбуждения или в состоянии покоя либо даже угнетения. Тормозные постсинаптические потенциалы всегда направлены на то, чтобы снизить (сделать более электроотрицательным) мембранный потенциал клетки и удержать его ниже порога возникновения потенциала действия. Таким образом, тормозный постсинаптический потенциал может рассматриваться как своего рода «временная гиперполяризация» клетки. Тормозные и возбуждающие постсинаптические потенциалы конкурируют друг с другом на множестве синаптических терминалей нейрона. Их суммация и предопределяет то, будет или не будет потенциал действия, сгенерированный пресинаптической клеткой в конкретном синапсе, повторен (регенерирован) подобным же потенциалом действия на постсинаптической мембране. Эта же суммация всех имеющихся потенциалов предопределяет и то, какой будет реакция постсинаптической клетки на очередной, «ещё один», тормозный или возбуждающий сигнал, не достигающий сам по себе величины потенциала действия. Некоторые типичные нейромедиаторы, вовлечённые в генерацию тормозных постсинаптических потенциалов - это ГАМК и глицин, и - во многих, но не во всех, случаях (в зависимости от типа рецептора) - серотонин.

Энциклопедичный YouTube

    1 / 1

    ✪ Neuronal synapses (chemical) | Human anatomy and physiology | Health & Medicine | Khan Academy

Субтитры

Я думаю, мы уже имеем правильное представление о том, как сигнал передается вдоль отростка нейрона. Мы видели, что несколько дендритов, может быть этот и этот, и еще один, были возбуждены, в них, вероятно, возник потенциал действия. Когда мы говорим, что дендрит возбужден, мы имеем в виду, что при этом открываются некоторые виды каналов. Это является пусковым сигналом. Открытый канал позволяет ионам войти внутрь клетки или, в некоторых случаях, ионы, наоборот, выходят из клетки наружу. В таких случаях запускается торможение. Но давайте рассмотрим случай, когда ионы входят внутрь клетки электротоническим способом. Вход ионов в клетку изменяет заряд или разность потенциала на мембране клетки. Если благодаря этим совместным эффектам изменение разности потенциала мембраны около аксонального бугорка достаточно велико и достигает порога, то натриевые каналы, расположенные здесь, откроются, и натрий войдет внутрь клетки. В этой ситуации потенциал становится более положительным. Калиевые каналы открываются для того, чтобы вернуть потенциал к исходному значению, но в данный момент потенциал более положительный, что электротонически влияет на соседний натриевый канал. И опять возникает ситуация, когда натриевые ионы входят в клетку, и таким образом сигнал распространяется по отростку нейрона. Теперь возникает естественный вопрос, что происходит в местах контакта нейронов? Мы говорили, что этот дендрит получил пусковой сигнал или был возбужден. В большинстве случаев он получает пусковой сигнал или бывает возбужден другим нейроном. Иногда это может быть что-то еще. В нашем примере, когда аксон возбуждается, он возбуждает другую клетку. Это может быть мышечная клетка или, в большинстве случаев, аксон возбуждает другой нейрон. Как он это делает? Итак, это терминаль аксона. Недалеко от него может находиться дендрит другого нейрона. Это другой нейрон имеет собственный аксон и сому. Аксон должен каким-то образом передать пусковой сигнал на дендрит. Как это происходит? Каким образом сигнал переходит с одного нейронального аксона на дендрит соседнего нейрона? На самом деле сигнал не всегда переходит с аксона на дендрит, но такой вариант наиболее типичен. Также сигнал может передаваться с аксона на аксон, с дендрита на дендрит, с аксона на сому нейрона, но давайте сосредоточимся на передаче сигнала с аксона на дендрит, так как это наиболее традиционный способ, с помощью которого нейроны передают информацию от одной клетки к другой. Теперь давайте увеличим эту часть рисунка. Я увеличу во много раз этот кусочек, обведенный квадратиком. Это терминаль аксона. И теперь давайте увеличим всю эту область. Теперь мы увеличим область дендрита соседнего нейрона, и я поверну весь рисунок. Хотя, на самом деле, мне даже не надо ничего поворачивать. Сейчас я нарисую терминаль аксона. Допустим терминаль выглядит примерно так. Я во много раз ее увеличиваю. Это терминаль аксона данного нейрона. Это внутренняя часть нейрона. А здесь находится дендрит. Я рисую дендрит рядом с терминалью аксона. Теперь мы увеличим всю эту область. Это дендрит соседнего нейрона. Это внутренняя часть первого нейрона. Возникший в первом нейроне потенциал действия распространяется по аксону. Постепенно, возможно, здесь (я не знаю, сможем ли мы увеличить эту область) или здесь, потенциал действия повлияет на электрический потенциал мембраны и сделает его достаточно положительным для того, чтобы открыть натриевый канал. Возможно, я очень близок к тому, что происходит в действительности. Этот канал находится здесь. Он открывается, и ионы натрия входят в клетку. Затем все и начинается. В клетке есть калий, который может выйти из нее, но в настоящий момент натрий находится внутри, и возникший положительный заряд запускает другой канал, а тот может запустить другой натриевый канал, если дальше есть еще один натриевый канал. Но на конце аксона находятся кальциевые каналы. Я нарисую их розовым цветом. Это кальциевый канал, который обычно закрыт. Это кальциевый ионный канал. Кальций имеет заряд +2. Кальциевый канал обычно закрыт, но он управляется потенциалом. Когда потенциал становится достаточно большим, то канал открывается и ионы кальция входят в клетку. Это очень напоминает работу потенциал-управляемого натриевого канала в том смысле, что когда потенциал становится положительным в области ворот, канал открывается. Таким образом, кальциевые ионы с зарядом +2 входят в клетку. Сейчас вы можете у меня спросить, почему ионы кальция входят в клетку? У них положительный заряд. Вы можете напомнить мне, что я только что сказал, что потенциал клетки стал положительным в результате вхождения внутрь клетки ионов натрия. Почему ионы кальция будут входить в клетку? Причина, по которой кальций будет входить в клетку, состоит в том, что у клетки есть ионные кальциевые насосы, аналогичные тем насосам, которые откачивают натрий из клетки и накачивают калий внутрь клетки. Кальциевые насосы почти идентичны натрий-калиевым насосам, о которых я вам рассказывал, но они имеют дело с ионами кальция. В мембране есть специальные белки. Это фософолипидный слой мембраны. Я нарисую два слоя, чтобы вы понимали, что мембрана - двухслойная. Я нарисую это таким образом. Так это будет выглядеть ближе к действительности, хотя все вместе это выглядит не очень реалистично. Это билипидный слой мембраны. Вы уже, наверно, поняли, но я хочу нарисовать, чтобы прояснить этот момент. В мембране находятся кальциевые ионные насосы, которые являются разновидностью АТФаз, так же, как и натрий-калиевые насосы. Одна молекула АТФ связывается с белком, ион кальция связывается с этим же белком в другом месте. Фосфат отщепляется от АТФ, и энергии, освобожденной благодаря этому, достаточно для изменения конформации белка, что приводит к выталкиванию ионов кальция наружу. Существенно то, с каким участком связывается кальций, и в зависимости от этого при открытии канала кальций может только войти в клетку. Все это очень похоже на работу натрий-калиевого насоса, но неплохо знать, что в состоянии покоя концентрация ионов кальция снаружи очень высока, и движение ионов кальция управляется АТФ. Концентрация кальция снаружи значительно больше, чем внутри, и перемещение ионов кальция осуществляется этими ионными насосами. Таким образом, потенциал действия, достигший терминали, запускает не другой натриевый канал, а открывает ворота кальциевого канала, и ионы кальция входят в терминаль аксона. Теперь ионы кальция связываются с другими белками. Но перед тем, как я перейду к другим белкам, мы должны получить представление о том, что происходит в месте контакта. Я, кажется, уже использовал слово "синапс", а, может быть, и нет. Место, где этот аксон встречается с дендритом, называется синапсом. Вы можете представить это как место соединения, контакта или касания. Этот нейрон называется пресинаптическим. Я напишу это название. Всегда хорошо иметь небольшой запас терминов под рукой. А это постсинаптический нейрон. Пространство между двумя нейронами, между этим аксоном и этим дендритом, называется синаптической щелью. Это очень небольшое пространство. Мы сейчас говорим о химическом синапсе. Обычно, когда люди говорят о синапсе, они говорят о химическом синапсе. Существуют также электрические синапсы, но я не буду останавливаться на них. Химический синапс - это наиболее распространенный вариант синапса. Синаптическая щель в химических синапсах равна примерно 20 нанометрам, что очень мало. Диаметр клетки в среднем обычно колеблется от 10 до 100 микрон. Микрон равен 10 в минус 6 степени метра. Нанометр соответственно равен 10 в минус 9 степени метра. То есть это очень маленькое расстрояние. В этом есть смысл, посмотрите, какими большими выглядят клетки по сравнению с небольшой щелью между ними. Итак, это очень узкая щель. У пресинаптического нейрона в терминале находятся везикулы. Помните, что такое везикулы? Это пузырьки, окруженные мембраной, которые находятся внутри клетки. У нас есть везикулы в терминале. Мембраны везикул также состоят из фосфолипидных слоев. Вы можете рассматривать везикулы как контейнеры. Я нарисую один такой пузырек. Они могут содержать в себе молекулы, которые называют нейротрансмиттерами. Я нарисую нейротрансмиттеры зеленым цветом. В везикулах содержатся молекулы нейротрансмиттеров. Возможно, вы слышали это слово раньше. На самом деле, множество веществ, которые люди используют для лечения депрессии или других состояний, относящихся к состоянию мозга, влияют на синтез или на действие трансмиттеров. Я не буду вдаваться в детали, но везикулы содержат нейротрансмиттеры. Когда кальциевые каналы открываются (они потенциал- управляемые и открываются при изменении потенциала в положительную сторону), ионы кальция входят внутрь. Затем кальций связывается с белками, которые удерживают везикулы у мембраны. Эти маленькие везикулы прикреплены к пресинаптической мембране или к мембране аксональной терминали, вот здесь. Эти белки называют якорными белками. SNARE - английская аббревиатура, но это слово также означает "удерживать", что хорошо подходит в данном случае, так как эти белки в буквальном смысле "заякоривают" везикулы к мембране. В этом заключается функция этих белков. Когда ионы кальция входят в клетку, они связываются с этими белками, прикрепляются к белкам и изменяют их конформацию таким образом, что белки подтаскивают везикулы ближе к мембране и раздвигают обе мембраны, что приводит к их слиянию. Я увеличу эту часть рисунка, чтобы было понятнее, что на самом деле происходит. После того, как ионы кальция связались с белками (так все выглядело до того, как ионы кальция вошли в клетку), якорные белки подтягивают везикулы близко-близко к пресинаптической мембране. После этого везикула и пресинаптическая мембрана выглядит таким образом. Здесь находятся якорные белки. Я рисую не совсем точно так, как это выглядит в клетке, но эта картинка дает представление о том, как это происходит. Якорные белки подтягивают мембраны друг к другу, затем раздвигают их так, чтобы они могли соединиться. Самое главное последствие этого события - причина, по которой все и происходит - освобождение нейротрасмиттеров из везикул прямо в синаптическую щель. Нейротрансмиттеры, находившиеся внутри везикулы, попадают в синаптическую щель. Этот процесс называется экзоцитозом. Можно сказать, что это процесс выхода веществ из цитоплазмы пресинаптического нейрона. Возможно, вы слышали какие-то из названий нейротрансмиттеров, например, серотонин, дофамин, эпинефрин (или адреналин). Адреналин является также и гормоном, но он действует и как нейротрансмиттер. Норэпинефрин (или норадреналин) - тоже одновременно и гормон, и нейротрансмиттер. .Возможно, вы слышали эти слова раньше. Как бы то ни было, эти вещества освобождаются в синаптическую щель и связываются с мембраной постсинаптического нейрона или этого дендрита. Допустим, они связываются здесь, здесь и здесь. Они связываются со специальными белками на поверхности этой мембраны, но главным результатом этого связывания является открытие ионных каналов. Таким образом этот нейрон возбуждает этот дендрит. Когда эти нейротрансмиттеры связываются с этой мембраной, возможно, открываются натриевые каналы. Возможно, это вызовет открытие натриевого канала. В этом случае натриевый канал не потенциал-управляемый, а лиганд-управляемый. Нейротрансмиттер открывает натриевый канал, затем ионы натрия входят в клетку, что мы уже обсуждали ранее, когда говорили об исходном сигнале. Вход ионов натрия соответствует возникновению возбуждения. Клетка становится более положительно заряженной. Если она достаточно положительно заряжена, то в этой точке аксонального бугорка электротонически увеличивается потенциал. Если рядом находится другой нейрон (как в рассмотренном случае), этот нейрон тоже возбуждается. Вот как это происходит. Сигнал может быть также тормозным. Можно представить, что вместо запуска натриевого ионного канала, происходит открытие калиевого ионного канала. Если происходит открытие калиевого ионного канала, то концентрационный градиент ионов калия заставит калий выходить из клетки. Таким образом, в случае калия положительный заряд уходит из клетки. Помните, я использовал для обозначения ионов калия треугольники. Если положительный заряд выходит из клетки, то содержимое нейрона становится менее положительным. Таким образом, достичь порог возникновения потенциала действия станет труднее, так как для этого понадобится большее изменение потенциала в положительную сторону. Надеюсь, я не запутал вас этими объяснениями. Этот контакт, если следовать первому описанию, которое я дал, возбуждающий. Когда терминаль нейрона возбуждается потенциалом действия, ионы кальция входят внутрь. В результате, везикулы изливают свое содержимое в синаптическую щель, а затем освобожденные нейротрансмиттеры открывают натриевые каналы и стимулируют нейрон. Если нейротрансмиттер открывает калиевые каналы, то он тормозит нейрон. Так работают синапсы. Я хотел было сказать, что существуют миллионы синапсов, но это было бы неправильно. Синапсов триллионы. По самым точным оценкам в коре головного мозга от 100 до 500 триллионов синапсов. Это только в коре головного мозга. Причина, почему у нас так много синапсов, заключается в том, что один нейрон может образовывать множество синапсов. Вы можете представить, что у этой нарисованной клетки синапс может быть здесь, и здесь, и здесь. Даже один нейрон может образовывать сотни и тысячи синапсов. Этот нейрон может иметь синапс с этим нейроном, и с этим, и с этим. Итак, у нас много много контактов. Именно синапсы делают нас сложными существами, именно они заставляют нас действовать характерным для человеческого разума образом. Надеюсь, что вам этот видеоурок показался полезным.

Компоненты

Типы

Эта система работает таким образом, что тормозные постсинаптические потенциалы суммируются во времени с подпороговыми или надпороговыми возбуждающими потенциалами, в результате чего уменьшается результирующий постсинаптический потенциал. Эквивалентные по модулю возбуждающие (положительные) и тормозные (отрицательные) постсинаптические потенциалы дают в сумме нейтральное состояние, взаимно отменяя действие друг друга на клетку. Баланс между возбуждающими и тормозными постсинаптическими потенциалами очень важен для интеграции клеткой всей поступающей от различных возбуждающих и тормозных синапсов электрической и химической информации.

Дополнительные факторы

Размер нейрона также может влиять на эффект, который оказывает на клетку тормозной постсинаптический потенциал. Простое и мгновенное временное суммирование постсинаптических потенциалов имеет место быть в нейронах сравнительно небольшого размера, тогда как в крупных нейронах большее количество синапсов, метаботропных и ионотропных рецепторов, а также наличие длинных аксонов и большее расстояние от синапсов до тела нейрона позволяет нейронам ещё некоторое время продолжать электрическое и химическое общение с другими нейронами (то есть пребывать в состоянии возбуждения), несмотря на наличие тормозных потенциалов на удалённых от тела синапсах, пока тормозящий сигнал «путешествует» до тела клетки.

Ингибиторные молекулы

ГАМК является весьма распространённым тормозным нейромедиатором (нейромедиатором, воздействие которого приводит к генерации тормозного постсинаптического потенциала) в нервной системе и сетчатке млекопитающих. ГАМК-рецепторы являются пентамерами, наиболее часто состоящими из трёх разных субъединиц (α, β, γ), хотя существуют и несколько других субъединиц (δ,ε, θ, π, ρ) и возможных конфигураций ГАМК-рецептора. Открытые каналы селективно проницаемы для ионов хлора или калия (в зависимости от типа рецептора) и позволяют этим ионам проходить через мембрану. Если электрохимический потенциал возникающего при этом ионного тока более отрицателен, чем порог возникновения потенциала действия, то возникающее как следствие этого ионного тока (который сам есть следствие активации ГАМК-рецептора) изменение электрического заряда (потенциала) мембраны и её проводимости приводит к тому, что результирующий постсинаптический потенциал становится ниже (более электроотрицательным), чем порог возникновения потенциала действия, и это снижает вероятность постсинаптического нейрона сгенерировать потенциал действия. Молекулы и рецепторы глицина действуют во многом сходным образом и в нервной системе, и в сетчатке.

Ингибирующие рецепторы

Существует два типа ингибирующих рецепторов:

Ионотропные рецепторы

Ионотропные рецепторы (также известные как открываемые лигандом ионные каналы) играют важную роль в быстрой генерации тормозных постсинаптических потенциалов. Нейромедиатор связывается со специфическим доменом рецептора - так называемым сайтом или доменом связывания лиганда (ligand-binding site or domain ) рецептора, расположенным на наружной стороне поверхностной мембраны клетки (обращённым в синаптическую щель). Это приводит к изменению пространственной конфигурации рецептора и к открытию в нём ионного канала, который образуется внутри эндомебранного (проходящего сквозь мембрану) домена рецептора. В результате возникает быстрый входящий или исходящий ток ионов - внутрь или наружу клетки. Ионотропные рецепторы способны продуцировать очень быстрые изменения постсинаптического потенциала - в течение миллисекунд после генерации потенциала пресинаптической клеткой. Ионные каналы способны влиять на амплитуду и временные характеристики потенциала действия клетки в целом. Ионотропные ГАМК-рецепторы, сопряженные с каналами ионов хлора, являются мишенью действия многих лекарств, в частности барбитуратов, бензодиазепинов, ГАМК-аналогов и агонистов, ГАМК-антагонистов, таких, как пикротоксин. Алкоголь также модулирует ионотропные ГАМК-рецепторы.

Метаботропные рецепторы

Метаботропные рецепторы, большинство из которых относятся к семейству G-белок-связанных рецепторов, не содержат встроенных в их структуру ионных каналов. Вместо этого они содержат внеклеточный домен связывания лиганда (ligand-binding domain ) и внутриклеточный домен связывания с первичным эффекторным белком, которым наиболее часто бывает G-белок . Связывание агониста с метаботропным рецептором приводит к такому изменению конфигурации рецептора, при котором активируется первичный эффекторный белок. Так, например, в случае G-белка активация связанного с ним рецептора приводит к диссоциации β- и γ- субъединиц G-белка в виде βγ-димера и к активации ими ряда «добавочных» внутриклеточных сигнальных путей (в частности en:GIRK - вторичного эффектора. Повышение или снижение активности протеинкиназы А запускает нисходящий эффекторный каскад вплоть до эффекторов N-го порядка. В частности, открываются или закрываются ионные каналы.

Ингибирующие метаботропные рецепторы связаны всегда с ингибирующим подтипом G-белка, то есть с G i . Таким образом, они угнетают активность аденилатциклазы и снижают концентрацию циклического АМФ, эффективно угнетая тем самым активность протеинкиназы А. Помимо этого, они активируют входящий поток ионов калия через GIRK , активированный βγ-димером G-белка, и угнетают активность кальциевых каналов, что вызывает гиперполяризацию клетки. Именно таким образом устроены метаботропные ГАМК-рецепторы (гетеродимеры R1 и R2 субъединиц). Сходным образом устроен и 5-HT1A-рецептор .

Метаботропные ингибирующие рецепторы генерируют медленные тормозные постсинаптические потенциалы (длительностью от миллисекунд до минут). Они могут активироваться одновременно с ионотропными (с некоторыми типами ионотропных рецепторов они могут формировать «рецепторный дуплет» - гетеродимер) в одном и том же синапсе, что позволяет одному и тому же синапсу генерировать как быстрые, так и медленные тормозные потенциалы.