Жизнь звезд презентация по астрономии. Презентация Тема: Рождение и эволюция звезд

Cлайд 1

Cлайд 2

Вселенная состоит на 98% из звезд. Они же являются основным элементом галактики. «Звезды – это огромные шары из гелия и водорода, а также других газов. Гравитация тянет их внутрь, а давление раскаленного газа выталкивает их наружу, создавая равновесие. Энергия звезды содержится в ее ядре, где ежесекундно гелий взаимодействует с водородом».

Cлайд 3

Жизненный путь звезд представляет собой законченный цикл – рождение, рост, период относительно спокойной активности, агония, смерть, и напоминает жизненный путь отдельного организма. Астрономы не в состоянии проследит жизнь одной звезды от начала и до конца. Даже самые короткоживущие звёзды существуют миллионы лет – дольше жизни не только одного человека, но и всего человечества. Однако учёные могут наблюдать много звёзд, находящихся на самых разных стадиях своего развития, - только что родившиеся и умирающие. По многочисленным звездным портретам они стараются восстановить эволюционный путь каждой звезды и написать её биографию.

Cлайд 4

Cлайд 5

Области звездообразования. Гигантские молекулярные облака с массами, большими 105 массы Солнца (их известно более 6 000 в Галактике) Туманность Орел в 6000 световых лет от нас молодое рассеянное звёздное скопление в созвездии Змеи тёмные области в туманности - это протозвёзды

Cлайд 6

Туманность Ориона светящаяся эмиссионная туманность с зеленоватым оттенком и находится ниже Пояса Ориона можно видеть даже невооружённым глазом в 1300 световых лет от нас, а величиной в 33 световых года

Cлайд 7

Гравитационное сжатие Сжатие - следствие гравитационной неустойчивости, идея Ньютона. Позже Джинс определил минимальные размеры облаков, в которых может начаться самопроизвольное сжатие. Имеет место достаточно эффективное охлаждение среды: высвобождающаяся энергия гравитации идет на излучение инфракрасного диапазона, уходящее в космическое пространство.

Cлайд 8

Протозвезда При увеличении плотности облака оно становится непрозрачным для излучения. Начинается повышение температуры внутренних областей. Температура в недрах протозвезды достигает порога термоядерных реакций синтеза. Сжатие на какое-то время прекращается.

Cлайд 9

молодая звезда пришла на главную последовательность диаграммы Г-Р начался процесс выгорания водорода - основного звездного ядерного топлива сжатие практически не происходит, и запасы энергии больше не изменяются медленное изменение химического состава в ее центральных областях, обусловленное превращением водорода в гелий Звезда переходит в стационарное состояние

Cлайд 10

Cлайд 11

когда водород полностью выгорает, звезда уходит с главной последовательности в область гигантов или при больших массах - сверхгигантов Гиганты и сверхгиганты

Cлайд 12

масса звезды < 1,4 массы Солнца: БЕЛЫЙ КАРЛИК электроны обобществляются, образуя вырожденный электронный газ гравитационное сжатие останавливается плотность становится до нескольких тонн в см3 еще сохраняет Т=10^4 К постепенно остывает и медленно сжимается(миллионы лет) окончательно остывают и превращаются в ЧЕРНЫХ КАРЛИКОВ Когда все ядерное топливо выгорело, начинается процесс гравитационного сжатия.

Cлайд 13

Белый карлик в облаке межзвездной пыли Два молодых черных карлика в созвездии Тельца

Cлайд 14

масса звезды > 1,4 массы Солнца: силы гравитационного сжатия очень велики плотность вещества достигает миллиона тонн в см3 выделяется огромная энергия – 10^45 Дж температура – 10^11 К взрыв Сверхновой звезды большая часть звезды выбрасывается в космическое пространство со скоростью 1000-5000 км/с потоки нейтрино охлаждают ядро звезды - Нейтронная звезда

Содержание

  • Рождение звезд
  • Жизнь звезды
  • Белые карлики и нейтронные дыры
  • Черные дыры
  • Гибель звезд
Цели и задачи
  • Ознакомить с действием сил гравитации во Вселенной, которые приводят к образованию звезд.
  • Рассмотреть процесс эволюции звезд.
  • Дать понятие о пространственной скорости звезд.
  • Охарактеризовать физическую природу звезд.
Рождение звезды
  • Космос часто называют безвоздушным пространством, полагая его пустым. Однако, это не так. В межзвездном пространстве есть пыль и газ, в основном, гелий и водород, причем последнего значительно больше.
  • Во Вселенной существуют даже целые облака пыли и газа, которые могут сжиматься под действием сил гравитации.
Рождение звезды
  • В процессе сжатия часть облака будет нагреваясь уплотняться.
  • Если масса сжимающегося вещества достаточна для того, чтобы в процессе сжатия внутри него начали происходить ядерные реакции, то из такого облака получается звезда.
Рождение звезды
  • Каждая "новорожденная" звезда, в зависимости от своей первоначальной массы, занимает определенное место на диаграмме Герцшпрунга-Рессела - графике, по одной оси которого отложен показатель цвета звезды, а по другой - ее светимость, т.е. количество энергии, излучаемой в секунду.
  • Показатель цвета звезды связан с температурой ее поверхностных слоев - чем ниже температура, тем звезда краснее, а ее показатель цвета больше.
Жизнь звезды
  • В процессе эволюции звезды меняют свое положение на диаграмме "спектр-светимость", перемещаясь из одной группы в другую. Большую часть жизни звезда проводит на Главной последовательности. Справа и вверх от нее располагаются как самые молодые звезды, так и звезды, далеко продвинувшиеся по своему эволюционному пути.
Жизнь звезды
  • Время жизни звезды зависит, главным образом, от ее массы. По теоретическим расчетам, масса звезды может варьировать от 0,08 до 100 солнечных масс.
  • Чем больше масса звезды, тем быстрее выгорает водород, и тем более тяжелые элементы могут образоваться в процессе термоядерного синтеза в ее недрах. На поздней стадии эволюции, когда в центральной части звезды начинается горение гелия, она сходит с Главной последовательности, становясь, в зависимости от массы, голубым или красным гигантом.
Жизнь звезды
  • Но наступает момент, когда звезда на пороге кризиса, она уже не может вырабатывать необходимое количество энергии, для поддержания внутреннего давления и противостояния силам гравитации. Начинается процесс неудержимого сжатия (коллапс).
  • Вследствие коллапса образуются звезды с огромной плотностью (белые карлики). Одновременно с образованием сверхплотного ядра, звезда сбрасывает свою внешнюю оболочку, которая превращается в газовое облако - планетарную туманность и постепенно рассеивается в космосе.
  • Звезда большей массы может сжиматься до радиуса, 10 км, превращаясь в нейтронную звезду. Одна столовая ложка нейтронной звезды весит 1 млрд. тонн! Последняя стадия эволюции еще более массивной звезды - образование черной дыры. Звезда сжимается до таких размеров, при которых вторая космическая скорость становится равной скорости света. В районе черной дыры пространство сильно искривляется, а время замедляется.
Жизнь звезды
  • Образование нейтронных звезд и черных дыр обязательно связано с мощным взрывом. В небе возникает яркая точка, почти такая же яркая, как галактика, в которой она вспыхнула. Это "Сверхновая звезда". Упоминания, встречающиеся в древних летописях о появлении на небе ярчайших звезд, это не что иное, как свидетельства коллосальных космических взрывов.
Гибель звезды
  • Звезда теряет всю внешнюю оболочку, которая, разлетаясь с большой скоростью, через сотни тысяч лет без следа растворяется в межзвездном среде, а до этого мы наблюдаем ее как расширяющуюся газовую туманность.
  • Первые 20 000 лет расширение газовой оболочки сопровождается мощным радиоизлучением. В течение этого времени она представляет собой горячий плазменный шар, имеющий магнитное поле, удерживающее заряженные частицы высоких энергий, образовавшиеся в Сверхновой.
  • Чем больше времени прошло с момента взрыва, тем слабее радиоизлучение и ниже температура плазмы.

Слайд 2

Звёздная эволюция - последовательность изменений, которым звезда подвергается в течение её жизни, то есть на протяжении сотен тысяч, миллионов или миллиардов лет, пока она излучает свет и тепло. В течение таких колоссальных промежутков времени изменения оказываются весьма значительными.

Слайд 3

Эволюция звезды начинается в гигантскоммоле-кулярномоблаке, также называемомзвёздной колыбелью.Большая часть «пустого» пространства в галактике в действительности содержит от 0,1 до 1 молекулы на см³. Молекулярное облако же имеет плотность около миллиона молекул на см³. Масса такого облака превышает массу Солнца в 100 000-10 000 000 раз благодаря своему размеру: от 50 до 300 световых лет в поперечнике. Пока облако свободно обращается вокруг центра родной галактики, ничего не происходит. Однако из-за неоднородности гравитационного поля в нём могут возникнуть возмущения, приводящие к локальным концентрациям массы. Такие возмущения вызы-ваютгравитационный коллапс облака.

Слайд 4

При коллапсе молекулярное облако разделяется на части, образуя всё более и более мелкие сгустки. Фрагменты с массой меньше ~100 солнечных масс способны сформировать звезду. В таких формирова-нияхгаз нагревается по мере сжатия, вызванного высвобождением гравитационной потенциальной энергии, и облако становится протозвездой, транс-формируясь во вращающийся сферический объект. Звёзды на начальной стадии своего существования, как правило, скрыты от взгляда внутри плотного облака пыли и газа. Часто силуэты таких звёздо-образующих коконов можно наблюдать на фоне яркого излучения окружающего газа. Такие образо-ванияполучили название глобул Бока.

Слайд 5

Молодые звёзды малой массы (до трёх масс Солнца), находящиеся на подходе к главной последовательности, полностью конвективны; процесс конвекции охваты-ваетвсе области светила. Это ещё по сути протозвёзды, в центре которых только-только начинаются ядерные реак-ции, и всё излучение происходит, в основном, из-за гравитационного сжатия. Пока гидростатическое равновесие ещё не установлено, светимость звезды убывает при неизменной эффективной температуре.

Слайд 6

Очень малая доля протозвёзд не достигает достаточной для реакций термоядерного синтеза температуры. Такие звёзды полу-чили название «коричневые карлики», их масса не превышает одной десятой сол-нечной. Такие звёзды быстро умирают, постепенно остывая за несколько сотен миллионов лет. В некоторых наиболее массивных протозвёздах температура из-за сильного сжатия может достигнуть 10 миллионов К, делая возможным синтез гелия из водорода. Такая звезда начинает светить-ся.

Слайд 7

Реакции сжигания гелия очень чувствитель-нык температуре. Иногда это приводит к большой нестабильности. Возникают силь-нейшиепульсации, которые в конечном итоге сообщают внешним слоям достаточ-ноеускорение, чтобы быть сброшенными и превратиться в планетарную туманность. В центре туманности остаётся оголенное ядро звезды, в котором прекращаются термо-ядерные реакции, и оно, остывая, превращается в гелиевый белый карлик, как правило, имеющий массу до 0,5-0,6 солнечных и диаметр порядка диаметра Земли.

Слайд 8

При достижении звездой средней величины (от 0,4 до 3,4 солнечных масс) фазы крас-ного гиганта в её ядре заканчивается водо-род и начинаются реакции синтеза углерода из гелия. Этот процесс идет при более высоких температурах и поэтому поток энергии от ядра увеличивается, что приво-дитк тому, что внешние слои звезды начи-наютрасширяться. Начавшийся синтез углерода знаменует новый этап в жизни звезды и продолжается некоторое время. Для звезды по размеру схожей с Солнцем этот процесс может занять около миллиарда лет.

Слайд 9

Молодые звёзды с массой больше 8 солнечных масс уже обладают характеристиками нормаль-ныхзвезд, поскольку прошли все промежуточ-ныестадии и смогли достичь такой скорости ядерных реакций, чтобы они компенсировали потери энергии на излучение, пока накаплива-ласьмасса гидростатического ядра. У этих звёзд истечение массы и светимость настолько велики, что не просто останавливают коллапсирование ещё не ставших частью звезды внешних областей молекулярного облака, но, наоборот, отталкивает их прочь. Таким образом, масса образовавшейся звезды заметно меньше массы протозвёздного облака. Скорее всего, этим и объясняется отсутствие в нашей галактике звёзд больше чем около 300 масс Солнца.

Слайд 10

После того, как звезда с массой большей, чем пять солнечных, входит в стадию красного сверхгиганта, её ядро под действием сил гравитации начинает сжиматься. По мере сжатия увеличиваются температура и плотность, и начинается новая последовательность термоядерных реакций. В таких реакциях синтезируются все более тяжёлые элементы: гелий, углерод, кислород, кремний и железо, что временно сдерживает коллапс ядра. В конечном итоге, по мере образования всё более тяжёлых элементов периодической системы, из кремния синтезируется железо-56. На этом этапе дальнейший термоядерный синтез становится невозможен поскольку ядро железа-56 обладает максимальным дефектом массы и образование более тяжёлых ядер с выделением энергии невозможно. Поэтому когда железное ядро звезды достигает определённого размера, то давление в нём уже не в состоянии противостоять тяжести наружных слоёв звезды, и происходит незамедлительный коллапс ядра с нейтрониза-циейего вещества.

Слайд 11

Сопутствующий этому всплеск нейтрино прово-цирует ударную волну. Сильные струи нейтрино и вращающееся магнитное поле выталкивают большую часть накопленного звездой материала - так называемые рассадочные элементы, включая железо и более лёгкие элементы. Разлетающаяся материя бомбардируется выры-ваемымииз ядра нейтронами, захватывая их и тем самым создавая набор элементов тяжелее железа, включая радиоактивные, вплоть до урана (а возможно, даже до калифорния). Таким образом, взрывы сверхновых объясняют нали-чиев межзвёздном веществе элементов тяжелее железа, что, однако, не является единственно возможным способом их образования, к примеру это демонстрируют технециевые звёзды.

Слайд 12

Взрывная волна и струи нейтрино уносят вещество прочь от умирающей звезды в межзвёздное пространство. В последующем, остывая и перемещаясь по космосу, этот материал сверхновой может столкнуться с другим космическим «мусором», и возможно, участвовать в образовании новых звёзд, планет или спутников. Процессы, протекающие при образовании сверхновой, до сих пор изучаются, и пока в этом вопросе нет ясности. Также под вопросом остаётся момент, что же на самом деле остаётся от изначальной звезды. Тем не менее, рассматриваются два варианта: нейтронные звезды и чёрные дыры.

Слайд 13

Крабовидная туманность - газообразная туман-ностьв созвездии Тельца, являющаяся остатком сверхновой и плерионом. Она стала первым астрономическим объектом отождествлённым с историческим взрывом сверхновой, записанным китайскими и арабскими астрономами в 1054 году. Расположенная на расстоянии около 6500 световых лет (2 кпк) от Земли, туманность имеет диаметр в 11 световых лет (3,4 пк) и расширяется со скоростью около 1500 километров в секунду. В центре туманности находится (нейтронная звезда), 28-30 км в диаметре, который испускает импульсы излучения от гамма-лучей до радиоволн. При рентгеновском- и гамма-излучении выше 30 кэВ, этот пульсар является сильнейшим постоянным источником подобного излучения в нашей галактике.

Посмотреть все слайды

Кузина Софья и Шевяко Анна

Астрономия, как предмет, выведена из школьной программы. Однако в физике 11 класса по программе ФГОС есть глава "Строение Вселенной". В этой главе есть уроки " Физические характеристики звезд" и "Эволюция звезд". Данная презентация, выполненная ученицами, является дополнительным материалом для данных уроков. Работа выполнена эстетично, красочно, грамотно и материал, предложенный в ней выходит за рамки программы.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Рождение и эволюция звезд Работу выполнили: учащиеся 11 класса «Л» МБОУ «СОШ №37» г.Кемерово Кузина Софья и Шевяко Анна. Руководитель: Шинкоренко Ольга Владимировна, учитель физики.

Рождение звезды Космос часто называют безвоздушным пространством, полагая его пустым. Однако, это не так. В межзвездном пространстве есть пыль и газ, в основном, гелий и водород, причем последнего значительно больше. Во Вселенной существуют даже целые облака пыли и газа, которые могут сжиматься под действием сил гравитации.

Рождение звезды В процессе сжатия часть облака будет нагреваясь уплотняться. Если масса сжимающегося вещества достаточна для того, чтобы в процессе сжатия внутри него начали происходить ядерные реакции, то из такого облака получается звезда.

Рождение звезды Каждая "новорожденная" звезда, в зависимости от своей первоначальной массы, занимает определенное место на диаграмме Герцшпрунга-Рессела - графике, по одной оси которого отложен показатель цвета звезды, а по другой - ее светимость, т.е. количество энергии, излучаемой в секунду. Показатель цвета звезды связан с температурой ее поверхностных слоев - чем ниже температура, тем звезда краснее, а ее показатель цвета больше.

Жизнь звезды В процессе эволюции звезды меняют свое положение на диаграмме "спектр-светимость", перемещаясь из одной группы в другую. Большую часть жизни звезда проводит на Главной последовательности. Справа и вверх от нее располагаются как самые молодые звезды, так и звезды, далеко продвинувшиеся по своему эволюционному пути.

Жизнь звезды Время жизни звезды зависит, главным образом, от ее массы. По теоретическим расчетам, масса звезды может варьировать от 0,08 до 100 солнечных масс. Чем больше масса звезды, тем быстрее выгорает водород, и тем более тяжелые элементы могут образоваться в процессе термоядерного синтеза в ее недрах. На поздней стадии эволюции, когда в центральной части звезды начинается горение гелия, она сходит с Главной последовательности, становясь, в зависимости от массы, голубым или красным гигантом.

Жизнь звезды Но наступает момент, когда звезда на пороге кризиса, она уже не может вырабатывать необходимое количество энергии, для поддержания внутреннего давления и противостояния силам гравитации. Начинается процесс неудержимого сжатия (коллапс). Вследствие коллапса образуются звезды с огромной плотностью (белые карлики). Одновременно с образованием сверхплотного ядра, звезда сбрасывает свою внешнюю оболочку, которая превращается в газовое облако - планетарную туманность и постепенно рассеивается в космосе. Звезда большей массы может сжиматься до радиуса, 10 км, превращаясь в нейтронную звезду. Одна столовая ложка нейтронной звезды весит 1 млрд. тонн! Последняя стадия эволюции еще более массивной звезды - образование черной дыры. Звезда сжимается до таких размеров, при которых вторая космическая скорость становится равной скорости света. В районе черной дыры пространство сильно искривляется, а время замедляется.

Жизнь звезды Образование нейтронных звезд и черных дыр обязательно связано с мощным взрывом. В небе возникает яркая точка, почти такая же яркая, как галактика, в которой она вспыхнула. Это "Сверхновая звезда". Упоминания, встречающиеся в древних летописях о появлении на небе ярчайших звезд, это не что иное, как свидетельства колоссальных космических взрывов.

Гибель звезды Звезда теряет всю внешнюю оболочку, которая, разлетаясь с большой скоростью, через сотни тысяч лет без следа растворяется в межзвездной среде, а до этого мы наблюдаем ее как расширяющуюся газовую туманность. Первые 20 000 лет расширение газовой оболочки сопровождается мощным радиоизлучением. В течение этого времени она представляет собой горячий плазменный шар, имеющий магнитное поле, удерживающее заряженные частицы высоких энергий, образовавшиеся в Сверхновой. Чем больше времени прошло с момента взрыва, тем слабее радиоизлучение и ниже температура плазмы.

Примеры звёзд Галактика в созвездии Большая Медведица Большая Медведица

Примеры главных созвездий Андромеда

Используемая литература Карпенков С. Х. Концепции современного естествознания. - М., 1997. Шкловский И. С. Звезды: их рождение, жизнь и смерть. - М.: Наука, Главная редакция физико-математической литературы, 1984. - 384 с. Владимир Сурдин Как рождаются звезды – Рубрика «Планетарий», Вокруг Света, №2 (2809), Февраль 2008 Карпенков С. Х. Основные концепции естествознания. - М., 1998. Новиков И. Д. Эволюция Вселенной. - М., 1990. Ровинский Р. Е. Развивающаяся Вселенная. - М., 1995.

Спасибо за просмотр!

Происхождение и эволюция галактик и звезд Область звездообразования – туманность Ориона (М42), г Альнитак Альнилам


Модель звездообразования Радиус видимой части Вселенной – Метагалактики не может превышать расстояние, которое излучение проходит за время, равное возрасту Вселенной – 13,7±2 млрд. лет по современным представлениям. Следовательно галактики, родившиеся почти через 0,5 млрд. лет от Большого Взрыва, имеют возраст свыше 13 млрд. лет. Самые старые звезды с возрастом свыше 10 млрд. лет входят в состав шаровых звездных скоплений (население 2-го типа с низким содержанием элементов тяжелее Не). Скорее всего они образовались одновременно с галактиками. Шаровое звездное скопление М80 в созвездии Скорпиона в 8280 пк.


Возраст Вселенной и галактик а) Возраст нашей Галактики составляет 13,7 млрд.лет (точность 1%). б) Вселенная состоит из - 4% атомов видимого вещества; - 23% занимает темное вещество; - остальные 73% загадочная "антигравитация" (темная энергия), побуждающая Вселенную расширяться. Галактики начали образовываться через 100 млн.лет после Большого Взрыва и в последующие 3-5 млрд.лет сформировались и сгруппировались в скопления. Следовательно возраст самых старых эллиптических галактик около 14 млрд.лет. Первые звезды появляются через 1млн.лет после Большого Взрыва, следовательно должны иметься звезды с возрастом около 14 млрд.лет. 30 июня 2001 года с "Мыс Канаверал" стартовал астрономический аппарата НАСА "MAP" ("Microwave Anisotropy Probe") массой 840 кг и стоимостью 145 млн. $ и 1 октября 2001 года он достиг точки либрации L2 (гравитационного баланса между Солнцем, Землей и Луной), удаленной на 1,5 миллиона километров от Земли. Назначение КА - составить объемную картину взрыва и заглянуть в то время, когда еще не возникли звезды и галактики. WMAP: 1-балансировачные грузы системы точной стабилизации, 2-датчик системы навигации, 3-блок приемной электроники, 4- волновод, 5-всенаправленная антенна, 6- зеркало 1,4*1,6 м, 7-второй рефлектор, 8- охлаждение, 9-крепежная платформа, 10- электроника, 11-экран от солнечного света. С помощью космического аппарата НАСА WMAP собирающего сведения о фоновом микроволновом излучении, к 2006 году установлено:






Краткая история развития Вселенной ВремяТемператураСостояние Вселенной секБолее KИнфляционное расширение секБолее KПоявление кварков и электронов cек10 12 KОбразование протонов и нейтронов сек - 3 мин KВозникновение ядер дейтерия, гелия и лития 400 тыс. лет4000 КОбразование атомов 15 млн. лет300 KПродолжение расширения газового облака 1 млрд. лет20 KЗарождение первых звезд и галактик 3 млрд. лет10 K Образование тяжелых ядер при взрывах звезд млрд. лет3 KПоявление планет и разумной жизни лет10 -2 KПрекращение процесса рождения звезд лет KИстощение энергии всех звезд лет-20 K Испарение черных дыр и рождение элементарных частиц лет KЗавершение испарения всех черных дыр


Образование звезд Звезды образуются всегда группами (скоплениями) в результате гравитационной неустойчивости в холодных (Т=10К) и плотных молекулярных облаках массой не менее 2000 М. ГМО с массой более 10 5 М (известно более 6000) содержат до 90% всего молекулярного газа Галактики. Скопление холодного газа и пыли – глобула В68 (каталог Барнарда), фрагмент ГМО. Масса глобулы может достигать до 100 М Сжатию способствуют ударные волны при расширении остатков вспышек сверхновых, спиральные волны плотности и звездный ветер от горячих ОВ-звезд. Температура вещества при переходе от молекулярных облаков через фрагментацию облака (появление глоб) к звездам возрастает в миллионы раз, а плотность – в раз. Стадия развития звезды, характеризующаяся сжатием и не имеющая еще термоядерных источников энергии, называется протозвездой (греч. протос «первый»).


Эволюция звезд солнечного типа У образующейся протозвезды ядро втягивает все, или почти все вещество, сжимается и когда температура внутри превысит 10 млн.К, начинается процесс выгорания водорода (термоядерная реакция). Для звезд с M от самого начала прошло 60 млн.лет. На главной последовательности – самый продолжительный этап в жизни, звезды солнечного типа находится 9-10 млрд.лет. В прилегающем к ядру слое, как правило, остается водород, возобновляются протон-протонные реакции, давление в оболочке существенно повышается, и внешние слои звезды резко увеличиваются в размерах - звезда смещаться вправо – в область красных гигантов, увеличиваясь примерно в размере в 50 раз. В конце жизни, после стадии красного гиганта, звезда сжимается превращаясь в белый карлик, сбрасывает оболочку (до 30% массы) в виде планетарной туманности. Белый карлик продолжает слабо светиться еще очень долго, пока его тепло не израсходуется полностью, и он превратится в мертвого черного карлика. После того как звезда израсходует содержащийся в центральной части водород, гелиевое ядро начнет сжиматься, его температура повысится настолько, что начнутся реакции с большим энерговыделением (при температуре К начинается горение гелия - составляет по времени десятую часть горения Н).


Эволюция массивных звезд Сейчас известны два основных фактора, приводящие к потере устойчивости и коллапсу: = при температурах 5–10 млрд. К начинается фотодиссоциация ядер железа – «развал» ядер железа на 13 альфа-частиц с поглощением фотонов: 56 Fe + ? > 13 4 He + 4n, = при более высоких температурах – диссоциация гелия 4 He > 2n + 2p и нейтронизация вещества (захват электронов протонами с образованием нейтронов). Сброс оболочки звезды объясняют взаимодействием нейтрино с веществом. Распад ядер требует значительных затрат энергии, вещество теряет упругость, ядро сжимается, температура возрастает, но не так быстро, чтобы приостановить сжатие. Большая часть выделяемой при сжатии энергии уносится нейтрино. В результате нейтронизации вещества и диссоциации ядер происходит как бы взрыв звезды внутрь – имплозия. Вещество центральной области звезды падает к центру со скоростью свободного падения, втягивая последовательно все более удаленные от центра слои звезды. Начавшийся коллапс может остановиться упругостью вещества, достигшего ядерной плотности и состоящего в основном из вырожденных нейтронов (нейтронная жидкость). При этом образуется нейтронная звезда. Оболочка звезды приобретает огромный импульс и сбрасывается в межзвездное пространство со скоростью до км/с. При коллапсе ядер самых массивных звезд с массой более 30 масс Солнца имплозия ядра, по- видимому, приводит к образованию черной дыры. В звездах с массой больше 10M термоядерные реакции проходят в невырожденных условиях вплоть до образования самых устойчивых элементов железного пика (рис). Масса эволюционирующего ядра слабо зависит от полной массы звезды и составляет 2–2,5 M. 13 4 He + 4n, = при более высоких температурах – диссоциация гелия 4 He > 2n + 2p и нейтронизация вещества (захват электронов протонами с образованием нейтронов). Сброс оболочки звезды объясняют взаимодействием нейтрино с веществом. Распад ядер требует значительных затрат энергии, вещество теряет упругость, ядро сжимается, температура возрастает, но не так быстро, чтобы приостановить сжатие. Большая часть выделяемой при сжатии энергии уносится нейтрино. В результате нейтронизации вещества и диссоциации ядер происходит как бы взрыв звезды внутрь – имплозия. Вещество центральной области звезды падает к центру со скоростью свободного падения, втягивая последовательно все более удаленные от центра слои звезды. Начавшийся коллапс может остановиться упругостью вещества, достигшего ядерной плотности и состоящего в основном из вырожденных нейтронов (нейтронная жидкость). При этом образуется нейтронная звезда. Оболочка звезды приобретает огромный импульс и сбрасывается в межзвездное пространство со скоростью до 10 000 км/с. При коллапсе ядер самых массивных звезд с массой более 30 масс Солнца имплозия ядра, по- видимому, приводит к образованию черной дыры. В звездах с массой больше 10M термоядерные реакции проходят в невырожденных условиях вплоть до образования самых устойчивых элементов железного пика (рис). Масса эволюционирующего ядра слабо зависит от полной массы звезды и составляет 2–2,5 M.">
Последняя стадия эволюции звезд Крабовидная туманность - газовый остаток сверхновой с коллапсом ядра, взрыв которой наблюдался в 1054г. В центре - нейтронная звезда, выбрасывающая частицы, заставляющие газ светиться (голубой). Внешние волокна в основном состоят из водорода и гелия разрушенной массивной звезды. NGC 6543, Туманность Кошачий Глаз внутренняя область, изображение в псевдоцвете (красный Hα; синий нейтральный кислород, 630 нм; зелёный ионизированный азот, нм). Планетарные туманности образуются при сбросе внешних слоёв (оболочек) красных гигантов и сверхгигантов с массой 2.58 солнечных на завершающей стадии их эволюции. Рисунок: аккреционный диск горячей плазмы, вращающийся вокруг чёрной дыры