Химический состав живой клетки. Основные химические элементы клетки и их значение для жизнедеятельности организмов

Клетка

С точки зрения концепции живых систем по А. Ленинджеру.

    Живая клетка – это способная к саморегуляции и самовоспроизведению изотермическая система органических молекул, извлекающая энергию и ресурсы из окружающей среды.

    В клетке протекает большое количество последовательных реакций, скорость которых регулируется самой клеткой.

    Клетка поддерживает себя в стационарном динамическом состоянии, далеком от равновесия с окружающей средой.

    Клетки функционируют по принципу минимального расхода компонентов и процессов.

Т.о. клетка – элементарная живая открытая система, способная к самостоятельному существованию, воспроизведению и развитию. Она является элементарной структурно-функциональной единицей всех живых организмов.

Химический состав клеток.

Из 110 элементов периодической системы Менделеева в организме человека обнаружено 86 постоянно присутствующих. 25 из них необходимы для нормальной жизнедеятельности, причем 18 из них необходимы абсолютно, а 7 - полезны. В соответствии с процентным содержанием в клетке химические элементы делят на три группы:

    Макроэлементы Основные элементы (органогены) – водород, углерод, кислород, азот. Их концентрация: 98 – 99,9 %. Они являются универсальными компонентами органических соединений клетки.

    Микроэлементы – натрий, магний, фосфор, сера, хлор, калий, кальций, железо. Их концентрация 0,1%.

    Ультрамикроэлементы – бор, кремний, ванадий, марганец, кобальт, медь, цинк, молибден, селен, йод, бром, фтор. Они влияют на обмен веществ. Их отсутствие является причиной заболеваний (цинк - сахарный диабет, иод - эндемический зоб, железо - злокачественная анемия и т.д.).

Современной медицине известны факты отрицательного взаимодействия витаминов и минералов:

    Цинк снижает усвоение меди и конкурирует за усвоение с железом и кальцием; (а дефицит цинка вызывает ослабление иммунной системы, ряд патологических состояний со стороны желез внутренней секреции).

    Кальций и железо снижают усвоение марганца;

    Витамин Е плохо совмещается с железом, а витамин С – с витаминами группы В.

Положительное взаимовлияние:

    Витамин Е и селен, а также кальций и витамин К действуют синергично;

    Для усвоения кальция необходим витамин Д;

    Медь способствует усвоению и повышает эффективность использования железа в организме.

Неорганические компоненты клетки.

Вода – важнейшая составная часть клетки, универсальная дисперсионная среда живой материи. Активные клетки наземных организмов состоят на 60 – 95% из воды. В покоящихся клетках и тканях (семена, споры) воды 10 - 20%. Вода в клетке находится в двух формах – свободной и связанной с клеточными коллоидами. Свободная вода является растворителем и дисперсионной средой коллоидной системы протоплазмы. Ее 95%. Связанная вода (4 – 5 %) всей воды клетки образует непрочные водородные и гидроксильные связи с белками.

Свойства воды:

    Вода – естественный растворитель для минеральных ионов и других веществ.

    Вода – дисперсионная фаза коллоидной системы протоплазмы.

    Вода является средой для реакций метаболизма клетки, т.к. физиологические процессы происходят в исключительно водной среде. Обеспечивает реакции гидролиза, гидратации, набухания.

    Участвует во многих ферментативных реакциях клетки и образуется в процессе обмена веществ.

    Вода – источник ионов водорода при фотосинтезе у растений.

Биологическое значение воды:

    Большинство биохимических реакций идет только в водном растворе, многие вещества поступают и выводятся из клеток в растворенном виде. Это характеризует транспортную функцию воды.

    Вода обеспечивает реакции гидролиза – расщепление белков, жиров, углеводов под действием воды.

    Благодаря большой теплоте испарения происходит охлаждение организма. Например, потоотделение у человека или транспирация у растений.

    Большая теплоемкость и теплопроводность воды способствует равномерному распределению тепла в клетке.

    Благодаря силам адгезии (вода – почва) и когезии (вода – вода) вода обладает свойством капиллярности.

    Несжимаемость воды определяет напряженное состояние клеточных стенок (тургор), гидростатический скелет у круглых червей.

>> Химия: Химические элементы в клетках живых организмов

В составе веществ, образующих клетки всех живых организмов (человека, животных, растений), обнаружено более 70 элементов. Эти элементы принято делить на две группы: макроэлементы и микроэлементы.

Макроэлементы содержатся в клетках в больших количествах. В первую очередь, это углерод, кислород, азот и водород. В сумме они составляют почти 98% всего содержимого клетки. Кроме названных элементов к макроэлементам относят также магний, калий, кальций, натрий, фосфор , серу и хлор. Суммарное их содержание 1,9%. Таким образом, на долю остальных химических элементов приходится около 0,1%. Это микроэлементы. К ним относят железо, цинк, марганец, бор, медь, иод, кобальт, бром, фтор, алюминий и др.

В молоке млекопитающих обнаружено 23 микроэлемента: литий, рубидий, медь, серебро, барий, стронций, титан, мышьяк, ванадий, хром, молибден, иод, фтор, марганец, железо, кобальт, никель и др.

В состав крови млекопитающих входит 24 микроэлемента, а в состав головного мозга человека - 18 микроэлементов.

Как можно заметить, в клетке нет каких-либо особенных элементов, характерных только для живой природы, т. е. на атомном уровне различий между живой и неживой природой нет. Эти различия обнаруживаются лишь на уровне сложных веществ - на молекулярном уровне. Так, наряду с неорганическими веществами (водой и минеральными солями) клетки живых организмов содержат вещества, характерные только для них, - органические вещества (белки, жиры, углеводы, нуклеиновые кислоты, витамины , гормоны и др.). Эти вещества построены в основном из углерода, водорода, кислорода и азота, т. е. из макроэлементов. Микроэлементы содержатся в этих веществах в незначительных количествах, тем не менее их роль в нормальной жизнедеятельности организмов огромна. Например, соединения бора, марганца, цинка, кобальта резко увеличивают урожайность отдельных сельскохозяйственных растений и повышают их сопротивляемость к различного рода заболеваниям.

Человек и животные получают нужные им для нормальной жизнедеятельности микроэлементы через растения, которыми питаются. Если в пище не хватает марганца, то возможна задержка роста, замедление наступления половой зрелости, нарушение обмена веществ при формировании скелета . Добавка долей миллиграмма солей марганца к суточному рациону животных устраняет эти заболевания.

Кобальт входит в состав витамина В12, отвечающего за работу кроветворных органов. Недостаток кобальта в пище часто вызывает серьезное заболевание, которое приводит к истощению организма и даже к гибели.

Значение микроэлементов для человека впервые было выявлено при изучении такого заболевания, как эндемический зоб, которое вызывалось недостатком иода в пище и воде. Прием соли, содержащей иод, приводит к выздоровлению, а добавка его к пище в малых количествах предупреждает заболевание. С этой целью проводят иодирование пищевой поваренной соли , в которую добавляют 0,001-0,01% иодида калия.

В состав большинства биологических катализаторов-ферментов входят цинк, молибден и некоторые другие металлы. Эти элементы, содержащиеся в клетках живых организмов в очень малых количествах, обеспечивают нормальную работу тончайших биохимических механизмов, являются подлинными регуляторами процессов жизнедеятельности.

Многие микроэлементы содержатся в витаминах - органических веществах различной химической природы, поступающих в организм с пищей в малых дозах и оказывающих большое влияние на обмен веществ и общую жизнедеятельность организма. По своему биологическому действию они близки к ферментам, но ферменты образуются клетками организма, а витамины обычно поступают с пищей. Источниками витаминов служат растения: цитрусовые, шиповник, петрушка, лук, чеснок и многие другие. Некоторые витамины - А, В1, В2, К - получают синтетическим путем. Свое название витамины получили от двух слов: вита - жизнь и амин - содержащий азот.

Микроэлементы входят также в состав гормонов - биологически активных веществ, регулирующих работу органов и систем органов человека и животных. Название свое они берут от греческого слова хармао - побеждаю. Гормоны вырабатываются железами внутренней секреции и поступают в кровь, которая разносит их по всему организму. Некоторые гормоны получают синтетическим путем.

1. Макроэлементы и микроэлементы.

2. Роль микроэлементов в жизнедеятельности растений, животных и человека.

3. Органические вещества: белки, жиры, углеводы.

4. Ферменты.

5. Витамины.

6. Гормоны.

На каком уровне форм существования химического элемента начинается различие между живой и неживой природой?

Почему отдельные макроэлементы называют также биогенными? Перечислите их.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки В зависимости от содержания химических элементов в клетке их разделяют на группы: макроэлементы, микроэлементы и ультрамикроэлементы.

Отдельную групу среди макроелементов составляют органогенные элементы (O, C, H, N), которие образуют молекулы всех органических веществ.

Макроэлементы, их роль в клетке. Органогенные элементы - кислород, углерод, водород и азот составляют ≈ 98% химического содержания клетки. Они легко образуют ковалентные связи за счет обобщения двух электронов (по одному от каждого атома) и благодаря этому формируют большое разнообразие органических веществ в клетке.

Жизненно важными являются и другие макроэлементы в клетках животных и человека (калий, натрий, магний, кальций, хлор, железо), на долю которых приходится около 1,9% .

Так, ионы Калия и Натрия регулируют осмотическое давление в клетке, обуславливают нормальный ритм сердечной деятельности, возникновение и проведение нервного импульса. Ионы Кальция принимают участие в свертывание крови, сокращении мышечных волокон. Нерастворимые соли Кальция принимают участие в формировании костей и зубов.

Ионы магния играют важную роль в функционировании рибосом и митохондрий. Железо входит в состав гемоглобина.

Микроэлементы, их роль в клетке. Биологическая роль микро- и ультрамикроэлементов определяется не их процентным содержанием, а тем, что они входят в состав ферментов, витаминов и гормонов. Например, Кобальт входит в состав витамина В 12 , Йод – в состав гормона тироксина, Медь – в состав ферментов, катализирующих окислительно-востановительные процессы.

Ультрамикроэлементы, их роль в клетке. Их концентрация не привышает 0,000001 %. Это такие элементы: золото, серебро, свинец, уран, селен, цезий, берилий, радий, и др. Физиологическая роль многих химических элементов еще не установлена, но они необходимы для нормального функционирования организма. Например, дефицит ультрамикроэлемента Селена приводит к развитию раковых заболеваний.

Обобщенные сведения о биологическом значении основных химических элементов, содержащихся в клетках живых организмов, представлены в таблице 4.1.

При недостаче важного химического элемента в почве определенного региона, что обусловливает дефицит его в организме местных жителей, возникают так называемые эндемические болезни.

Все химические элементы содержатся в клетке в виде ионов или входят в состав химических веществ.

Табл. 4.1.Основные химические элементы клетки и их значение для жизнидеятольности организмов

Элемент Символ Содержание Значение для клетки и организма
Углерод o 15-18
Кислород N 65-75 1,5-3,0 Главный структурный компонент всех органических соединений клетки
Азот H 8-10 Обязательный компонент аминокислот
Водород K 0.0001 Главный структурный компонент всех органических соединений клетки
Фосфор S 0,15-0,4 Входит в состав костной ткани и зубной эмали, нуклеиновых кислот, АТФ и некоторых ферментов
Калий Cl 0,15-0,20 Содержится в клетке только в виде ионов, активирует ферменты белкового синтеза, обуславливает ритм сердечной деятельности, участвует в процессах фотосинтеза
Сера Ca 0,05-0,10 Входит в состав некоторых аминокислот, ферментов, витамина В
Хлор Mg 0,04-2,00 Важнейший отрицательный ион в организме животных, компонент НС1 в желудочном соке
Кальций Na 0,02-0,03 Входит в состав клеточной стенки растений, костей и зубов, активирует свертывание крови и сокращение мышечных волокон
Магний Fe 0,02-0,03 Входит в состав молекул хлорофилла, а также костей и зубов, активирует энергетический обмен и синтез ДНК
Натрий I 0,010-0,015 Содержится в клетке только в виде ионов, обуславливаетнормальный ритм сердечной деятельности, влияет на синтез гормонов
Железо Cu 0,0001 Входит в состав многих ферментов, гемоглобина и миоглобина, участвует в биосинтезе хлорофилла, в процессах дыхания и фотосинтеза
Йод Mn 0,0002 Входит в состав гормонов щитовидной железы
Медь Mo 0.0001 Входит в состав некоторых ферментов, участвует в процессах кровообразования, фотосинтеза, синтеза гемоглобина
Марганец Co 0,0001 Входит в состав некоторых ферментов или повышает их активность, принимает участие в развитии костей, ассимиляции азота и процессе фотосинтеза
Молибден Zn 0.0001 Входит в состав некоторых ферментов, участвует н процессах связывания атмосферного азота растениями
Кобальт o 0,0003 Входит в состав витамина В 12 , участвует в фиксации ат- мосферного азота растениями, развитии эритроцитов
Цинк N 15-18 Входит в состав некоторых ферментов, участвует в синтезе растительных гормонов (фуксина) и спиртовом брожении

Химические вещества клетки

В организме человека обнаружено 86 элементов периодической системы Менделеева, которые постоянно присутствуют, из них 25 необходимы для нормальной жизнедеятельности, 18 из которых абсолютно, а 7 полезны. Профессор В.Р. Вильямс назвал их элементами жизни.

В состав веществ, участвующих в реакциях, связанных с жизнью клетки, входят все известные химические элементы, большинство из них это кислород (65 - 75%), углерод (15 - 18%), водород (8 - 10%) и азот (1,5 - 3,0%). Остальные элементы делятся на 2 группы: макроэлементы (около 1,9%) и микроэлементы (около 0,1%). Макроэлементы - это сера, фосфор, хлор, калии, натрий, магний, кальций и железо, к микроэлементам - цинк, медь, иод, фтор, марганец, селен, кобальт, молибден, стронций, никель, хром, ванадий и др. Микроэлементы хоть и малочислены, но играют важную роль - влияют на обмен веществ. Без них невозможна нормальная жизнедеятельность каждой клетки в отдельности и организма как целого.

Таблица химические элементы в организме человека их роль

Доля в общей массе %

Роль или функция элементов в организме человека

Основные элементы организма человека

Кислород

Требуется для реакций окисления, в первую очередь для процесса дыхания. Присутствует в большинстве органических веществ и в воде.

Формирует каркас молекул органических веществ.

Присутствует в большинстве органических соединений и в воде.

Компонент всех белков, нуклеиновых кислот и многих других органических веществ.

Структурный компонент костей и зубов. Важен для проведения нервных импульсов через синапсы, процессов свертывания крови, сокращения мышц, оплодотворения.

Компонент нуклеиновых кислот, фосфолипидов, нуклеотидов, участвующих в переносе энергии. Структурный компонент костей.

Важнейший внутриклеточный катион. Необходим для проведения нервных импульсов. Компонент большинства белков.

Является энергетическим транспортом клетки, так как может переносить электроны кислорода и метильные группы. Обеспечивает защиту тканей и клеток от окислительных процессов.

Важнейший внеклеточный катион. Участвует в регуляции движения жидкости между отделами тела, а также в проведении нервных импульсов.

Микроэлементы организма

Кофактор ферментов (киназ).

Важнейший анион интерстициальной жидкости. Также важен для поддержания осмотического баланса. Участвует в транспорте кислорода с кровью (хлоридное смещение).

следовые количества

Компонент гемоглобина и миоглобина. Переносчик электронов. Кофактор ферментов (каталаз).

следовые количества

Компонент тиреоидных гормонов.

следовые количества

Компонент витамина В 12

Прочие элементы, присутствующие в следовых количествах, включают марганец (Мn), медь (Сu), цинк (Zn), фтор (F), молибден (Mo) и селен (Se).

_______________

Источник информации: Биология человека в диаграммах / В.Р. Пикеринг - 2003.

В состав живой клетки входят те же химические элементы, которые входят в состав неживой природы. Из 104 элементов периодической системы Д. И. Менделеева в клетках обнаружено 60.

Их делят на три группы:

  1. основные элементы - кислород, углерод, водород и азот (98% состава клетки);
  2. элементы, составляющие десятые и сотые доли процента,- калий, фосфор, сера, магний, железо, хлор, кальций, натрий (в сумме 1,9%);
  3. все остальные элементы, присутствующие в еще более малых количествах,- микроэлементы.

Молекулярный состав клетки сложный и разнородный. Отдельные соединения - вода и минеральные соли - встречаются также в неживой природе; другие - органические соединения: углеводы, жиры, белки, нуклеиновые кислоты и др.- характерны только для живых организмов.

НЕОРГАНИЧЕСКИЕ ВЕЩЕСТВА

Вода составляет около 80% массы клетки; в молодых быстрорастущих клетках - до 95%, в старых - 60%.

Роль воды в клетке велика.

Она является основной средой и растворителем, участвует в большинстве химических реакций, перемещении веществ, терморегуляции, образовании клеточных структур, определяет объем и упругость клетки. Большинство веществ поступает в организм и выводится из него в водном растворе. Биологическая роль воды определяется специфичностью строения: полярностью ее молекул и способностью образовывать водородные связи, за счет которых возникают комплексы из нескольких молекул воды. Если энергия притяжения между молекулами воды меньше, чем между молекулами воды и вещества, оно растворяется в воде. Такие вещества называют гидрофильными (от греч. «гидро» - вода, «филее» - люблю). Это многие минеральные соли, белки, углеводы и др. Если энергия притяжения между молекулами воды больше, чем энергия притяжения между молекулами воды и вещества, такие вещества нерастворимы (или слаборастворимы), их называют гидрофобными (от греч. «фобос» - страх) - жиры, липиды и др.

Минеральные соли в водных растворах клетки диссоциируют на катионы и анионы, обеспечивая устойчивое количество необходимых химических элементов и осмотическое давление. Из катионов наиболее важны К + , Na + , Са 2+ , Mg + . Концентрация отдельных катионов в клетке и во внеклеточной среде неодинакова. В живой клетке концентрация К высокая, Na + - низкая, а в плазме крови, наоборот, высокая концентрация Na + и низкая К + . Это обусловлено избирательной проницаемостью мембран. Разность в концентрации ионов в клетке и среде обеспечивает поступление воды из окружающей среды в клетку и всасывание воды корнями растений. Недостаток отдельных элементов - Fe, Р, Mg, Со, Zn - блокирует образование нуклеиновых кислот, гемоглобина, белков и других жизненно важных веществ и ведет к серьезным заболеваниям. Анионы определяют постоянство рН-клеточной среды (нейтральной и слабощелочной). Из анионов наиболее важны НРО 4 2- , Н 2 РO 4 — , Cl — , HCO 3 —

ОРГАНИЧЕСКИЕ ВЕЩЕСТВА

Органические вещества в комплексе образуют около 20-30% состава клетки.

Углеводы - органические соединения, состоящие из углерода, водорода и кислорода. Их делят на простые - моносахариды (от греч. «монос» - один) и сложные - полисахариды (от греч. «поли» - много).

Моносахариды (их общая формула С n Н 2n О n) - бесцветные вещества с приятным сладким вкусом, хорошо растворимы в воде. Они различаются по количеству атомов углерода. Из моносахаридов наиболее распространены гексозы (с 6 атомами С): глюкоза, фруктоза (содержащиеся в фруктах, меде, крови) и галактоза (содержащаяся в молоке). Из пентоз (с 5 атомами С) наиболее распространены рибоза и дезоксирибоза, входящие в состав нуклеиновых кислот и АТФ.

Полисахариды относятся к полимерам - соединениям, у которых многократно повторяется один и тот же мономер. Мономерами полисахаридов являются моносахариды. Полисахариды растворимы в воде, многие обладают сладким вкусом. Из них наиболее просты дисахариды, состоящие из двух моносахаридов. Например, сахароза состоит из глюкозы и фруктозы; молочный сахар - из глюкозы и галактозы. С увеличением числа мономеров растворимость полисахаридов падает. Из высокомолекулярных полисахаридов наиболее распространены у животных гликоген, у растений - крахмал и клетчатка (целлюлоза). Последняя состоит из 150-200 молекул глюкозы.

Углеводы - основной источник энергии для всех форм клеточной активности (движение, биосинтез, секреция и т. д.). Расщепляясь до простейших продуктов СO 2 и Н 2 O, 1 г углевода освобождает 17,6 кДж энергии. Углеводы выполняют строительную функцию у растений (их оболочки состоят из целлюлозы) и роль запасных веществ (у растений - крахмал, у животных - гликоген).

Липиды - это нерастворимые в воде жироподобные вещества и жиры, состоящие из глицерина и высокомолекулярных жирных кислот. Животные жиры содержатся в молоке, мясе, подкожной клетчатке. При комнатной температуре это твердые вещества. У растений жиры находятся в семенах, плодах и других органах. При комнатной температуре это жидкости. С жирами по химической структуре сходны жироподобные вещества. Их много в желтке яиц, клетках мозга и других тканях.

Роль липидов определяется их структурной функцией. Из них состоят клеточные мембраны, которые вследствие своей гидрофобности препятствуют смешению содержимого клетки с окружающей средой. Липиды выполняют энергетическую функцию. Расщепляясь до СO 2 и Н 2 O, 1 г жира выделяет 38,9 кДж энергии. Они плохо проводят тепло, накапливаясь в подкожной клетчатке (и других органах и тканях), выполняют защитную функцию и роль запасных веществ.

Белки - наиболее специфичны и важны для организма. Они относятся к непериодическим полимерам. В отличие от других полимеров их молекулы состоят из сходных, но нетождественных мономеров - 20 различных аминокислот.

Каждая аминокислота имеет свое название, особое строение и свойства. Их общую формулу можно представить в следующем виде

Молекула аминокислоты состоит из специфической части (радикала R) и части, одинаковой для всех аминокислот, включающей аминогруппу (- NH 2) с основными свойствами, и карбоксильную группу (СООН) с кислотными свойствами. Наличие в одной молекуле кислотной и основной групп обусловливает их высокую реактивность. Через эти группы происходит соединение аминокислот при образовании полимера - белка. При этом из аминогруппы одной аминокислоты и карбоксила другой выделяется молекула воды, а освободившиеся электроны соединяются, образуя пептидную связь. Поэтому белки называют полипептидами.

Молекула белка представляет собой цепь из нескольких десятков или сотен аминокислот.

Молекулы белков имеют огромные размеры, поэтому их называют макромолекулами. Белки, как и аминокислоты, обладают высокой реактивностью и способны реагировать с кислотами и щелочами. Они различаются по составу, количеству и последовательности расположения аминокислот (число таких сочетаний из 20 аминокислот практически бесконечно). Этим объясняется многообразие белков.

В строении молекул белков различают четыре уровня организации (59)

  • Первичная структура - полипептидная цепь из аминокислот, связанных в определенной последовательности ковалентными (прочными) пептидными связями.
  • Вторичная структура - полипептидная цепь, закрученная в тугую спираль. В ней между пептидными связями соседних витков (и другими атомами) возникают малопрочные водородные связи. В комплексе они обеспечивают довольно прочную структуру.
  • Третичная структура представляет собой причудливую, но для каждого белка специфическую конфигурацию - глобулу. Она удерживается малопрочными гидрофобными связями или силами сцепления между неполярными радикалами, которые встречаются у многих аминокислот. Благодаря их многочисленности они обеспечивают достаточную устойчивость белковой макромолекулы и ее подвижность. Третичная структура белков поддерживается также за счет ковалентных S - S (эс - эс) связей, возникающих между удаленными друг от друга радикалами серосодержащей аминокислоты - цистеина.
  • Четвертичная структура типична не для всех белков. Она возникает при соединении нескольких белковых макромолекул, образующих комплексы. Например, гемоглобин крови человека представляет комплекс из четырех макромолекул этого белка.

Такая сложность структуры белковых молекул связана с разнообразием функций, свойственных этим биополимерам. Однако строение белковых молекул зависит от свойств окружающей среды.

Нарушение природной структуры белка называют денатурацией . Она может возникать под воздействием высокой температуры, химических веществ, лучистой энергии и других факторов. При слабом воздействии распадается только четвертичная структура, при более сильном - третичная, а затем - вторичная, и белок остается в виде первичной структуры - полипептидной цепи, Этот процесс частично обратим, и денатурированный белок способен восстанавливать свою структуру.

Роль белка в жизни клетки огромна.

Белки - это строительный материал организма. Они участвуют в построении оболочки, органоидов и мембран клетки и отдельных тканей (волос, сосудов и др.). Многие белки выполняют в клетке роль катализаторов - ферментов, ускоряющих клеточные реакции в десятки, сотни миллионов раз. Известно около тысячи ферментов. В их состав, кроме белка, входят металлы Mg, Fe, Мn, витамины и т. д.

Каждая реакция катализируется своим особым ферментом. При этом действует не весь фермент, а определенный участок - активный центр. Он подходит к субстрату, как ключ к замку. Действуют ферменты при определенной температуре и рН среды. Особые сократительные белки обеспечивают двигательные функции клеток (движение жгутиковых, инфузорий, сокращение мышц и т. д.). Отдельные белки (гемоглобин крови) выполняют транспортную функцию, доставляя кислород ко всем органам и тканям тела. Специфические белки - антитела - выполняют защитную функцию, обезвреживая чужеродные вещества. Некоторые белки выполняют энергетическую функцию. Распадаясь до аминокислот, а затем до еще более простых веществ, 1 г белка освобождает 17,6 кДж энергии.

Нуклеиновые кислоты (от лат. «нуклеус» - ядро) впервые обнаружены в ядре. Они бывают двух типов - дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые кислоты (РНК). Биологическая роль их велика, они определяют синтез белков и передачу наследственной информации от одного поколения к другому.

Молекула ДНК имеет сложное строение. Она состоит из двух спирально закрученных цепей. Ширина двойной спирали 2 нм 1 , длина несколько десятков и даже сотен микромикрон (в сотни или тысячи раз больше самой крупной белковой молекулы). ДНК - полимер, мономерами которой являются нуклеотиды - соединения, состоящие из молекулы фосфорной кислоты, углевода - дезоксирибозы и азотистого основания. Их общая формула имеет следующий вид:

Фосфорная кислота и углевод одинаковы у всех нуклеотидов, а азотистые основания бывают четырех типов: аденин, гуанин, цитозин и тимин. Они и определяют название соответствующих нуклеотидов:

  • адениловый (А),
  • гуаниловый (Г),
  • цитозиловый (Ц),
  • тимидиловый (Т).

Каждая цепь ДНК представляет полинуклеотид, состоящий из нескольких десятков тысяч нуклеотидов. В ней соседние нуклеотиды соединены прочной ковалентной связью между фосфорной кислотой и дезоксирибозой.

При огромных размерах молекул ДНК сочетание в них из четырех нуклеотидов может быть бесконечно большим.

При образовании двойной спирали ДНК азотистые основания одной цепи располагаются в строго определенном порядке против азотистых оснований другой. При этом против А всегда оказывается Т, а против Г - только Ц. Это объясняется тем, что А и Т, а также Г и Ц строго соответствуют друг другу, как две половинки разбитого стекла, и являются дополнительными или комплементарными (от греч. «комплемент» - дополнение) друг другу. Если известна последовательность расположения нуклеотидов в одной цепи ДНК, то по принципу комплементарности можно установить нуклеотиды другой цепи (см. приложение, задача 1). Соединяются комплементарные нуклеотиды при помощи водородных связей.

Между А и Т возникают две связи, между Г и Ц - три.

Удвоение молекулы ДНК - ее уникальная особенность, обеспечивающая передачу наследственной информации от материнской клетки дочерним. Процесс удвоения ДНК называется редупликацией ДНК. Он осуществляется следующим образом. Незадолго перед делением клетки молекула ДНК раскручивается и ее двойная цепочка под действием фермента с одного конца расщепляется на две самостоятельные цепи. На каждой половине из свободных нуклеотидов клетки, по принципу комплементарности, выстраивается вторая цепь. В результате вместо одной молекулы ДНК возникают две совершенно одинаковые молекулы.

РНК - полимер, по структуре сходный с одной цепочкой ДНК, но значительно меньших размеров. Мономерами РНК являются нуклеотиды, состоящие из фосфорной кислоты, углевода (рибозы) и азотистого основания. Три азотистых основания РНК - аденин, гуанин и цитозин - соответствуют таковым ДНК, а четвертое - иное. Вместо тимина в РНК присутствует урацил. Образование полимера РНК происходит через ковалентные связи между рибозой и фосфорной кислотой соседних нуклеотидов. Известны три вида РНК: информационная РНК (и-РНК) передает информацию о структуре белка с молекулы ДНК; транспортная РНК (т-РНК) транспортирует аминокислоты к месту синтеза белка; рибосомная РНК (р-РНК) содержится в рибосомах, участвует в синтезе белка.

АТФ - аденозинтрифосфорная кислота - важное органическое соединение. По структуре это нуклеотид. В его состав входит азотистое основание аденин, углевод - рибоза и три молекулы фосфорной кислоты. АТФ - неустойчивая структура, под влиянием фермента разрывается связь между «Р» и «О», отщепляется молекула фосфорной кислоты и АТФ переходит в